These problems were generated by TAs and instructors in previous semesters.
They may or may not match the actual difficulty of problems on Quiz3.

Aliasing and Mutability

1. Are lists considered mutable or immutable objects? If mutable, what are some built
in methods you can use to directly change a list?

2. What does the following code print?

def ctli(P, M):

A=[T[1,5,71, [11]]
P[1][e] = P[1][e] * 3

M[1] = A[@]
A=P

print("A =", A)
print("P =", P)

print("M =", M)

cti([[2,4,6], [211,003 6,91, [3]1)

3. Given that three lists are originally set up with the following code:

IIYII]

O W > r
1

[
[
= A
[

1, L, 2]

1, L, 2]

Fill out the following table so that it shows the values in each variable after the line of
code in the left column has run. Any changes made should be cumulative (if A is
changed in row 1, the change should carry over to row 2).

Code

List A

List B

List C

Initial List

[1,

["Y"], 2]

[1,

["Y"], 2]

[1,

["y"1, 2]

A.remove(2)

B[@] = 9

C.append(5)

L.append("Z")

A = [3, 4]

Recursion

1. Define what a base case is in terms of a recursive problem.

2. In this problem, you will translate the algorithm below into a recursive Python function
b2d(s) that will compute the decimal value of a binary string of 1’s and 0’s. For
example, b2d("101") = 5and b2d("1011") = 11.

A. Base case: If the string is empty, return O
B. Recursive case:

a. Compute the decimal value of the all but the first digit recursively by
setting a variable value equal to the recursive call on the string from
index 1 to end.

b. Convert the 0 index character in the string to an integer and set a variable
bit equal to it.

c. Compute the bit’'s power of 2 by setting a variable power as 2 to the
power of the string length minus 1.

d. Return the value of the string so far as bit*power + value

Example: b2d("1011") recursively computes 1*23 + (0*22 + (1*2" + (1*2° + (0)))) = 11

3. Write the recursive function addDeck(deck) that takes in a 2D List representing a
deck of cards and recursively returns the sum of the numbers on the cards. Each list
inside the deck is a card, with the first element representing the number on the card and
the second element representing the suit. Assume all cards will be number cards. For
example:

d = [[1, "Hearts"], [4, "Spades"], [3, "Clubs"], [8, "Diamonds"]]
assert(addDeck(d) == 16)

4. Write a recursive function areNearlyEqual(L, M) which takes two lists of integers and
returns True if they are “nearly equal” or False otherwise. Two lists are “nearly equal” if
they are the same length and the corresponding values in the lists are all within 1
(inclusive) of each other. Your solution must use recursion.

Search Algorithms

Answer the following questions about binary and linear search.
a. Explain one major difference between binary and linear search
b. For linear search, at what index would the target element be found in the best
case scenario runtime? For binary search? Explain.
c. Forlinear search, at what index would the target element be found in the worst
case scenario runtime? For binary search? Explain.

2. Binary search algorithm trace: Assuming binary search is called on the following list,
write the list argument used in the function call after each split when using binary
search to search for 19.

Then: How many function calls are required to find the value? And how many calls
would be required if linear search were used?

Original list: [3, 12, 26, 28, 32, 39, 44]

Runtime and Big-O Notation

1. For each of the following programs, write the Big-O runtime of that program in terms
of N to the right of the code. Assume that all named functions have the runtimes
discussed in class. Make sure your Big-O is simplified (no extra terms) and as small
as possible.

Program Big-O Runtime

N = length of string S
def hasChar(S, char):
for c in S:
if ¢ == char:
return True
return False

N = length of string S
def countVowels(S):
vowels = ['A','E','I"','0',"'U"]
count = 0
for c in S:
for i in range(5):
if ¢ == vowels[i]:
count = count + 1
return count

N = length of list L
def specialSearch(L, item):
L = mergeSort(L)
return binarySearch(L, item)

N = length of list L
def getValue(L, i):
return L[1i]

N = length of lists L1 and L2
def searchAllItems(L1l, L2):
count = 0
for item in L1:
if linearSearch(L2, item):
count = count + 1
return count

N = length of list L
def printStuff(L):
for i in range(10):
print("I love 110!")
for item in L:
print(item)

Dictionaries

1. The fruits in a bag of groceries are provided as a list (eg. ["apple", "oranges",
"banana", "kiwis"]). For any elements in the list that are plural, like “kiwis”, we
say there are 3 of that fruit in the bag. (There are no fruits in the bag where the
singular form of the word ends in an “s”.) Write a function groceryCount that
outputs a dictionary with each fruit name and its frequency as a key-value pair.

For example:
groceryCount(["apple", "oranges", "banana", "kiwis", "kiwi"]) ==
{ "apple" : 1, "orange" : 3, "banana" : 1, "kiwi" : 4 }

2.
a. What does the following code print?

def chainedKeys(dict, startkey):
key = startkey
while key in dict.keys():
key = dict[key]
print(key)
return key
result = chainedKeys({3:6, 4:9, 5:7, 6:5, 7:4, 8:9, 9:2}, 3)
print(str(result) + " is missing")

b. What is one key whose value could be changed to make the function loop
infinitely? What should the value be changed to?

Designing Efficient Algorithms

1. What properties does a hash function need to achieve O(1) lookup in a hashtable?

2. What would happen if two objects happen to have the same hash values? Is this
allowed?

3. What are some data structures that you can apply hash functions to, and what are
the ones you cannot?

4. Each student in 15-110 is asked to create a list of their favorite ice cream flavors,
which they can update as their tastes change.

Students A and B say ["chocolate”, "vanilla", "strawberry"],

Student C says ["mint chocolate chip", "chocolate", "strawberry"], and
Student D says ["vanilla", "mint chocolate chip", "chocolate"].
Later, Student C finds the best strawberry ice cream ever and destructively shuffles their

favorite list.
Your professors want to maintain a dictionary of ice cream preferences (keys) to student
counts (values) in order to keep track of which combination is the favorite at the time the

preferences were first collected. How should they store the keys, and why that
approach?

5. Write out the list for each pass of a call to selection sort on the list [3, 7, 2, 9, -3].

6. Why is mergeSort’s worst case and best case runtime O(nlogn)?

