
ANSWER SHEET
These problems were generated by TAs and instructors in previous semesters.
They may or may not match the actual difficulty of problems on Quiz2.

Circuits and Gates

1. Given the following boolean expression, fill out a truth table that shows all the
possible results of the expression, then label the gates on the circuit below with
AND/OR/etc. so that it produces the same results.

(A or B) and ((not B) xor C)

ANSWER:

A B C Result

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 0

2. Recall that in lecture we built a simple addition machine called a Full Adder. Clearly

name and describe the purpose of the input(s) and output(s) of this machine.

ANSWER:
Inputs: ​X and Y are single digits of the numbers being added. C_in is the number
carried from the previous addition.
Outputs: ​Sum is the right digit of the result; C_out is the left digit, which will be carried
to the next addition.

3. What is the main difference between a half adder and a full adder?

ANSWER:
A half adder can only add two digits, while a full adder can add three digits.

4. What boolean operation does the following logic circuit behave like?

ANSWER:
X and Y

While Loops

1. Write a function ​cw1(n)​ that is algorithmically identical to the control flow chart
shown below. The function should take an integer n as a parameter and ​print ​output
as specified, returning nothing.

ANSWER:
def cw1(n):

x = 1

while x <= 12:
y = 1

while y <= 12:
if x * y == n:

print(x, y)

elif x == y:
print("double")

y = y + 1
x = x + 1

print(n)

2. Write the while loop that corresponds with this flow chart.

ANSWER:
i = 100

while i % 2 == 0:
print(i)

i = i/2

print("Odd number!")

3. Use while loop to write the function ​hasConsecutiveDigits(n)​ that takes in a
possibly-negative int value n and returns True if that number contains two
consecutive digits that are the same, and False otherwise.

ANSWER:
def hasConsecutiveDigits(n):

n = abs(n)

prevDigit = -1
while (n > 0):

onesDigit = n % 10

n = n // 10
if (prevDigit == onesDigit):

return True
prevDigit = onesDigit

return False

4. Write the function ​isPowerOfFour(n)​ that takes in a number n and returns True if n
is a power of 4, and returns False otherwise.

ANSWER:
def isPowerOfFour(n):

x = -1
while ((4**x) <= n):

x = x + 1
if (4**x == n):

return True
return False

For Loops
1. Explain when you would use a while loop versus a for loop over a range. Can you

always convert a for loop to a while loop? Can you always convert a while loop to a
for loop?

ANSWER:
You usually use a while loop when you don’t know how many iterations are going to
occur. You can always convert a for loop into a while loop but not the other way around.

2. Write a function ​numberOfFactors(n)​ which takes in a positive integer and returns
the number of factors it has.

ANSWER:
def numberOfFactors(n):

counter = 0
for i in range(1,n+1):

if (n%i == 0):
counter = counter + 1

return counter

3. Using a for loop, write the function ​fizzBuzz(n)​ that prints every number from 0 to
n-1 inclusive. If the number is divisible by 3, print “fizz” instead of the number. If the
number is divisible by 5, print “Buzz” instead of the number. If divisible by both 3 and
5, print “fizzBuzz” instead of the number.

ANSWER:
def fizzBuzz(n):

for i in range(n):
if (i % 3 == 0 and i % 5 == 0):

print("fizzBuzz")
elif (i % 3 == 0):

print("fizz")
elif (i % 5 == 0):

print("Buzz")

else:
print(i)

4. Using a for loop, write the function ​sumAllEven(n)​ that finds the sum of all even
numbers less than or equal to n.

ANSWER:
def sumAllEven(n):

sum = 0
for i in range(n+1):

if i % 2 == 0:
sum = sum + i

return sum

Strings

1. Read through the following block of code, and write what it will output..

s = "Computer Science"
t = "GO-1-TEN"

print("A:", s[4])
print("B:", t[len(t)-2])
print("C:", s[6:12])

print("D:", s > t)
print("E:", s.find("e"))
print("F:", t.lower())

for i in range(2, 10, 4):
 print(s[i] + t[i])

ANSWER
A: u
B: E

C: er Sci
D: False

E: 6

F: go-1-ten
m-

eE

2. Write a function ​whileSmile(s)​ that takes a string as input and uses a ​while loop
to count the number of times the two-character string ":)" occurs in s. You should
return the count. For example: ​whileSmile("Hello :):):)")​ should return 3.
Do not use the built-in function s.count().

ANSWER:
def whileSmile(s):

i = 0

count = 0
while i < len(s)-1:

if s[i] == ":" and s[i+1] == ")":
count = count + 1

i = i + 1

return count

3. Write a function ​reverseString(s)​ that returns a reversed version of the string s.

ANSWER:
def reverseString(s):

return s[::-1]

or

def reverseString(s):
reversed = ""

for i in range(len(s)):

reversed = s[i] + reversed
return reversed

Lists

1. Write the function ​onlyNegative(L)​ which takes a list of numbers, ​L​, and returns

a ​new list​ that contains only the negative numbers in ​L​, in the order they originally
appeared. Your function should ​not ​destructively modify the original list ​L​.

For example, ​onlyNegative([-2, 1, 2, -1, 0, -3, 3])​ would return the list
[-2, -1, -3]​.

ANSWER:
def onlyNegative(L):

result = []

for item in L:
if item < 0:

result.append(item)
return result

2. Write a function commonElement that takes in two lists and returns True if they

share a common element (ie. there is an element that occurs in both lists).

ANSWER:
def commonElement(x1, x2):

result = []

for elem in x1:
if elem in x2:

return True

return False

3. Given a word search puzzle (format is a 2D list of strings), check to see if a given
word is in the board. Words can be left->right or up->down, but not right->left,
down->up, or diagonal. For example,

puzzle = [['a', 'q', 'r', 't'],
 ['d', 'o', 'g', 'a'],

 ['w', 'm', 'z', 'c']]

assert(wordSearch(puzzle, "dog") == True)

assert(wordSearch(puzzle, "cat") == False)

ANSWER:
def wordSearch(puzzle, word):

allPossible = [] # all lines from our puzzle board
for row in range(len(puzzle)):

line = ""
for col in range(len(puzzle[0])):

line += puzzle[row][col]
allPossible.append(line)

for col in range(len(puzzle[0])):
line = ""

for row in range(len(puzzle)):
line += puzzle[row][col]

allPossible.append(line)

for elem in allPossible:
if word in elem:

return True
return False

