Unit 1 - Programming Skills and Computer Organization

Unit 2 - Data Structures and Efficiency

Unit 3 - Scaling Up Computing

Unit 4 - CS as a Tool

Unit 5 - CS in the World

Unit 1 - Programming Skills and Computer Organization

Understand the expectations, resources, and policies associated with 15-110
Define the essential components of computer science, algorithms and abstraction
Construct plain-language algorithms to solve basic tasks

Recognize and use the basic data types in programs
Interpret and react to basic error messages caused by programs
Use variables in code and trace the different values they hold

Understand how different number systems can represent the same information
Translate binary numbers to decimal, and vice versa
Interpret binary numbers as abstracted types, including colors and text

Identify the argument(s), returned value, and side effect(s) of a function call
Use function definitions when reading and writing algorithms to implement procedures
that can be repeated on different inputs

e Recognize the difference between local and global scope

Trace the call stack to understand how Python keeps track of nested function calls
Use libraries to import functions in categories like math, randomness, and graphics
Recognize that the process of tokenizing, parsing, and translating converts Python
code into instructions a computer can execute

e Recognize how the different types of errors are raised at different points in the Python
translation process

Use logical operators on Booleans to compute whether an expression is True or False
Use conditionals when reading and writing algorithms that make choices based on data

Translate Boolean expressions to truth tables and circuits
Translate circuits to truth tables and Boolean expressions
Recognize how addition is done at the circuit level using algorithms and abstraction



Use while loops when reading and writing algorithms to repeat actions while a certain
condition is met

Identify start values, continuing conditions, and update actions for loop control
variables

Use for loops when reading and writing algorithms to repeat actions a specified number
of times
Recognize which numbers will be produced by a range expression

Translate algorithms from control flow charts to Python code
Use nesting of statements to create complex control flow

Unit 2 - Data Structures and Efficiency

Index and slice into strings to break them up into parts
Use for loops to loop over strings by index
Use string operations and methods to solve problems

Read and write code using 1D and 2D lists
Use list methods to change lists without variable assignment

Recognize whether two values have the same reference in memory

Recognize the difference between mutable vs. immutable data types

Recognize the difference between destructive vs. non-destructive functions/operations
Use aliasing to write functions that destructively change lists

Define and recognize base cases and recursive cases in recursive code
Read and write basic recursive code
Trace over recursive functions that use multiple recursive calls with Towers of Hanoi

Recognize linear search on lists and in recursive contexts
Use binary search when reading and writing code to search for items in sorted lists

Identify the worst case and best case inputs of functions
Compare the function families that characterize different functions
Calculate a specific function or algorithm's efficiency using Big-O notation

Identify the keys and values in a dictionary
Use dictionaries when writing and reading code that uses pairs of data
Use for loops to iterate over the parts of an iterable value



Recognize the requirements for building a good hash function and a good hashtable
that lead to constant-time search

Recognize and trace the algorithms for selection sort and merge sort

Compute and contrast the efficiency and Big-O runtimes of selection sort and merge
sort

Identify core parts of trees, including nodes, children, the root, and leaves
Use binary trees implemented with dictionaries when reading and writing code

Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

Use graphs implemented as dictionaries when reading and writing simple algorithms in
code

Identify whether a tree is a binary search tree

Search for values in BSTs using binary search

Analyze the efficiency of binary search on a balanced vs. unbalanced BST
Search for paths in graphs using breadth-first search and depth-first search
Analyze the efficiency of BFS and DFS on a graph

Identify brute force approaches to common problems that run in O(n!), including
solutions to Travelling Salesperson and puzzle-solving

Identify brute force approaches to common problems that run in O(2*n), including
solutions to subset sum and exam scheduling

Define whether a function family is tractable or intractable

Define the complexity classes P and NP, and explain why they are important

Unit 3 - Scaling Up Computing

Define and understand the differences between the following types of concurrency:
circuit-level concurrency, multitasking, multiprocessing, and distributed
computing

Create concurrency trees to increase the efficiency of complex operations by executing
sub-operations at the same time

Recognize certain problems that arise while multiprocessing, such as difficulty of
design and deadlock

Create pipelines to increase the efficiency of repeated operations by executing
sub-steps at the same time

Use the MapReduce pattern to design and code parallelized algorithms for distributed
computing



Recognize core terms related to the internet, including: browsers, routers, ISPs, IP

addresses, DNS servers, protocols, packets, and cloud

Understand at a high level the internet communication process that happens when
you click on a link to a website in your browser.

Understand at a high level that the internet is fault tolerant due to being distributed

Define the following terms: data privacy, data security, authentication, and
encryption

Recognize the traits of the internet that make it more prone to security attacks and
recognize common security attacks (DDOS and man-in-the-middle).

Trace common encryption algorithms, such as the Caesar Cipher and RSA, and
recognize whether they are symmetric or asymmetric

Evaluate the efficiency of breaking encryption algorithms based on keyspace.

Unit 4 - CS as a Tool

Use the input command and try/except structures to handle direct user input in code
Implement and use helper functions in code to break up large problems into solvable
subtasks

Install external modules with the pip command

Read and write data from files
Interpret data according to different protocols: plaintext, CSV, and JSON
Reformat data to find, add, remove, or reinterpret pre-existing data

Represent the state of a system in a model by identifying components and rules
Visualize a model using graphics

Update a model over time based on rules

Update a model after events (mouse-based and keyboard-based) based on rules

Given a dataset, identify categorical, ordinal, and numerical features which may help
predict the correct output for a given input

Identify how the three major categories of learning (supervised, unsupervised, and
reinforcement) interact with three major categories of reasoning (classification,
regression, and clustering) and decide which type of learning / reasoning best fits a
problem statement.

Describe how training, validation, and testing are used to build a model and measure
its performance



Perform basic analyses on data, including calculating statistics and probabilities, to
answer simple questions

Choose an appropriate visualization to create based on the number of dimensions and
data types

Create simple matplotlib visualizations that show the state of a dataset using APls
and examples

Use Monte Carlo methods to estimate the answer to a question
Organize animated simulations to observe how systems evolve over time

Recognize how Als attempt to achieve goals by using a perception, reason, and
action cycle

Build game decision trees to represent the possible moves of a game

Use the minimax algorithm to determine an Al's best next move in a game
Design potential heuristics that can support 'good-enough' search for an Al

Unit 5 - CS in the World

Big Ideas of: Introduction of the theoretical concept of a computer

Big Ideas of: Construction of the first computer hardware and software

Big Ideas of: Transition of computers from government/corporate to personal
Big Ideas of: Connection of computers via the internet

Understand the current extent of data collection on the internet and how data is used
Recognize the uses and drawbacks of facial recognition algorithms in different contexts
Identify the societal impact when automated decision making replaces human decision
making due to the explainability problem and job displacement

Recognize and describe the key impacts of future computing ideas, including:
cryptocurrencies, NFTs, 5G, deepfakes, virtual reality, and quantum computing.



