
Unit 1 - Programming Skills and Computer Organization

Unit 2 - Data Structures and Efficiency

Unit 3 - Scaling Up Computing

Unit 4 - CS as a Tool

Unit 5 - CS in the World

Unit 1 - Programming Skills and Computer Organization
● Understand the expectations, resources, and policies associated with 15-110
● Define the essential components of computer science, algorithms and abstraction
● Construct plain-language algorithms to solve basic tasks

● Recognize and use the basic data types in programs
● Interpret and react to basic error messages caused by programs
● Use variables in code and trace the different values they hold

● Understand how different number systems can represent the same information
● Translate binary numbers to decimal, and vice versa
● Interpret binary numbers as abstracted types, including colors and text

● Identify the argument(s), returned value, and side effect(s) of a function call
● Use function definitions when reading and writing algorithms to implement procedures

that can be repeated on different inputs
● Recognize the difference between local and global scope

● Trace the call stack to understand how Python keeps track of nested function calls
● Use libraries to import functions in categories like math, randomness, and graphics
● Recognize that the process of tokenizing, parsing, and translating converts Python

code into instructions a computer can execute
● Recognize how the different types of errors are raised at different points in the Python

translation process

● Use logical operators on Booleans to compute whether an expression is True or False
● Use conditionals when reading and writing algorithms that make choices based on data

● Translate Boolean expressions to truth tables and circuits
● Translate circuits to truth tables and Boolean expressions
● Recognize how addition is done at the circuit level using algorithms and abstraction



● Use while loops when reading and writing algorithms to repeat actions while a certain
condition is met

● Identify start values, continuing conditions, and update actions for loop control
variables

● Use for loops when reading and writing algorithms to repeat actions a specified number
of times

● Recognize which numbers will be produced by a range expression

● Translate algorithms from control flow charts to Python code
● Use nesting of statements to create complex control flow

Unit 2 - Data Structures and Efficiency
● Index and slice into strings to break them up into parts
● Use for loops to loop over strings by index
● Use string operations and methods to solve problems

● Read and write code using 1D and 2D lists
● Use list methods to change lists without variable assignment

● Recognize whether two values have the same reference in memory
● Recognize the difference between mutable vs. immutable data types
● Recognize the difference between destructive vs. non-destructive functions/operations
● Use aliasing to write functions that destructively change lists

● Define and recognize base cases and recursive cases in recursive code
● Read and write basic recursive code
● Trace over recursive functions that use multiple recursive calls with Towers of Hanoi

● Recognize linear search on lists and in recursive contexts
● Use binary search when reading and writing code to search for items in sorted lists

● Identify the worst case and best case inputs of functions
● Compare the function families that characterize different functions
● Calculate a specific function or algorithm's efficiency using Big-O notation

● Identify the keys and values in a dictionary
● Use dictionaries when writing and reading code that uses pairs of data
● Use for loops to iterate over the parts of an iterable value



● Recognize the requirements for building a good hash function and a good hashtable
that lead to constant-time search

● Recognize and trace the algorithms for selection sort and merge sort
● Compute and contrast the efficiency and Big-O runtimes of selection sort and merge

sort

● Identify core parts of trees, including nodes, children, the root, and leaves
● Use binary trees implemented with dictionaries when reading and writing code

● Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

● Use graphs implemented as dictionaries when reading and writing simple algorithms in
code

● Identify whether a tree is a binary search tree
● Search for values in BSTs using binary search
● Analyze the efficiency of binary search on a balanced vs. unbalanced BST
● Search for paths in graphs using breadth-first search and depth-first search
● Analyze the efficiency of BFS and DFS on a graph

● Identify brute force approaches to common problems that run in O(n!), including
solutions to Travelling Salesperson and puzzle-solving

● Identify brute force approaches to common problems that run in O(2^n), including
solutions to subset sum and exam scheduling

● Define whether a function family is tractable or intractable
● Define the complexity classes P and NP, and explain why they are important

Unit 3 - Scaling Up Computing
● Define and understand the differences between the following types of concurrency:

circuit-level concurrency, multitasking, multiprocessing, and distributed
computing

● Create concurrency trees to increase the efficiency of complex operations by executing
sub-operations at the same time

● Recognize certain problems that arise while multiprocessing, such as difficulty of
design and deadlock

● Create pipelines to increase the efficiency of repeated operations by executing
sub-steps at the same time

● Use the MapReduce pattern to design and code parallelized algorithms for distributed
computing



● Recognize core terms related to the internet, including: browsers, routers, ISPs, IP
addresses, DNS servers, protocols, packets, and cloud

● Understand at a high level the internet communication process that happens when
you click on a link to a website in your browser.

● Understand at a high level that the internet is fault tolerant due to being distributed

● Define the following terms: data privacy, data security, authentication, and
encryption

● Recognize the traits of the internet that make it more prone to security attacks and
recognize common security attacks (DDOS and man-in-the-middle).

● Trace common encryption algorithms, such as the Caesar Cipher and RSA, and
recognize whether they are symmetric or asymmetric

● Evaluate the efficiency of breaking encryption algorithms based on keyspace.

Unit 4 - CS as a Tool
● Use the input command and try/except structures to handle direct user input in code
● Implement and use helper functions in code to break up large problems into solvable

subtasks
● Install external modules with the pip command

● Read and write data from files
● Interpret data according to different protocols: plaintext, CSV, and JSON
● Reformat data to find, add, remove, or reinterpret pre-existing data

● Represent the state of a system in a model by identifying components and rules
● Visualize a model using graphics
● Update a model over time based on rules
● Update a model after events (mouse-based and keyboard-based) based on rules

● Given a dataset, identify categorical, ordinal, and numerical features which may help
predict the correct output for a given input

● Identify how the three major categories of learning (supervised, unsupervised, and
reinforcement) interact with three major categories of reasoning (classification,
regression, and clustering) and decide which type of learning / reasoning best fits a
problem statement.

● Describe how training, validation, and testing are used to build a model and measure
its performance



● Perform basic analyses on data, including calculating statistics and probabilities, to
answer simple questions

● Choose an appropriate visualization to create based on the number of dimensions and
data types

● Create simple matplotlib visualizations that show the state of a dataset using APIs
and examples

● Use Monte Carlo methods to estimate the answer to a question
● Organize animated simulations to observe how systems evolve over time

● Recognize how AIs attempt to achieve goals by using a perception, reason, and
action cycle

● Build game decision trees to represent the possible moves of a game
● Use the minimax algorithm to determine an AI's best next move in a game
● Design potential heuristics that can support 'good-enough' search for an AI

Unit 5 - CS in the World
● Big Ideas of: Introduction of the theoretical concept of a computer
● Big Ideas of: Construction of the first computer hardware and software
● Big Ideas of: Transition of computers from government/corporate to personal
● Big Ideas of: Connection of computers via the internet

● Understand the current extent of data collection on the internet and how data is used
● Recognize the uses and drawbacks of facial recognition algorithms in different contexts
● Identify the societal impact when automated decision making replaces human decision

making due to the explainability problem and job displacement

● Recognize and describe the key impacts of future computing ideas, including:
cryptocurrencies, NFTs, 5G, deepfakes, virtual reality, and quantum computing.


