15-110 Hw6 - Protein Sequencing
Hw6 and its checks are organized differently from the other assignments. If you haven't
already done so, you should read the Hw6 General Guide to understand how this

assignment works.

Project Description

In this project, you will use data analysis to process and analyze DNA sequences for the
gene p53, which is used to suppress cancer in organisms. Specifically, you will compare
the p53 genes in humans and elephants, to identify what they have in common and how
they are different. Note: basic knowledge of DNA/RNA/proteins is helpful for this project,
but not required.

In the first week, you will interpret DNA data files from the NIH, convert them to RNA,
then convert that to a sequence of generated proteins. In the second week, you'l
compare the DNA data of the two organisms to discover their similarities and
differences. In the third week, you'll use that comparison to generate a visualization of
the results.

Click on the following links to read the instructions for each week's assignment:
Check6-1 - due Friday 4/23 at noon EST

Check6-2 - due Friday 4/30 at noon EST

Hw6 - due Friday 5/07 at noon EST

Check6-1 - due Friday 4/23 at noon EST

In the first stage of the project, you will download DNA data from NIH's website, convert
it to RNA, and then convert that to a sequence of proteins. During this process you will

output how many bases exist in each sequence, how many of those bases are actually
used, and how many proteins are synthesized from the sequence.

Step 0: Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Get the DNA data [10pts]

First, you need to retrieve the NIH data you will analyze in this project. To do this, go to
the NIH gene database website, and retrieve the following webpages:

e Human p53:

https://www.ncbi.nlm.nih.gov/nuccore/NC 000017.11?report=fasta&from=7668402&to=7687550&strand=true

e Elephant p53:
h

J//www.ncbi.nlm.nih.

Note that DNA is composed of four bases: cytosine (C), guanine (G), adenine (A), and
thymine (T). These bases, when read together, produce instructions that the organism
can follow in order to create useful things. We represent the connected sequence of
bases in a text file with a single letter per base.

Copy the DNA text from each page into a text file in the data folder, which should be in
your project's folder and hold two files at first: test_dna.txt and codon_table.json.
Make sure to ONLY copy in the DNA, not the surrounding text! You should name the file
with the human DNA human_p53. txt, and the file with the elephant DNA
elephant_p53.txt.

Now implement the function readFile(filename) included in the starter file. Given a
filename, read the text from that file into a variable. Remove any newlines ("\n") from
the text, then return it. When called on a DNA file, this will return a string holding all the
DNA in the file.

https://www.ncbi.nlm.nih.gov/nuccore/NC_000017.11?report=fasta&from=7668402&to=7687550&strand=true
https://www.ncbi.nlm.nih.gov/nuccore/NW_003573467.1?report=fasta&from=11687413&to=11699835&strand=true

To test this function, run testReadFile(). This function assumes you have named your
data files appropriately and included them in the data directory as the starter file.

Note: to keep the starter file from becoming too crowded, all the tests have been moved
to the file hwe_protein_tests.py, which you can open and read while debugging. The
functions in this file are called at the bottom of hwé_protein.py. If you change the
filename of hwé_protein.py, you will need to change the filename imported by
hw6_protein_tests.py in the first line of the file too.

Step 2: Convert DNA to RNA [10pts]

Next, you need to convert the DNA string to a string of RNA, which will be used to follow
the instructions of the DNA. However, this process is not done by reading all of the DNA
string. Instead, the organism breaks down the DNA into groups of three bases (called
codons). One codon, ATG, signals the Start of an RNA strand; three other codons (TAA,
TAG, and TGA) signal the end (Stop).

Implement the function dnaToRna(dna, startIndex) included in the starter file. You
can assume that the start point for the RNA has already been found (startIndex); your
task is to read codons from that start point until the end point is found, and return a list
of all the codons in between. To do this, loop through the DNA sequence and produce
codons as you go, by combining together every three DNA bases in a row into a codon.
Add each codon to a list as a three-character string. As soon as you have added a Stop
codon (or run out of DNA bases to read), return the list of codons.

One final note- for a variety of reasons, RNA uses U as a base instead of T. You'll need
to replace every T base you find with a U instead. This means you'll need to check for
Stop codons UAA, UAG, and UGA.

To test this function, run testDnaToRna().
Step 3: Make a Codon Dictionary [10pts]

To turn RNA into proteins, we'll need to know which amino acid each codon
corresponds to. We've provided this information in the file data/codon_table. json,
which came as part of your starter zip file. Unfortunately, this data is not formatted
exactly as you need it to be; it maps amino acids to lists of codons, but you need to map
each codon to a amino acid.

Implement the function makeCodonDictionary(filename) in the starter file. First,
open and read the contents of the file filename into a dictionary by calling
json.load(). Then use the loaded dictionary (which maps amino acids to lists of
codons) to generate a new dictionary (which will map codons to amino acids). Make
sure to change all Ts in the codons to Us as you do this!

To test this function, run testMakeCodonDictionary().
Step 4: Convert RNA to Proteins [10pts]

To turn RNA into proteins, we'll need to identify each codon in the RNA sequence and
add its associated amino acid to the chain. This chain of amino acids will become our
protein.

Implement the function generateProtein(codons, codonD) in the starter file. This
takes an RNA sequence (a list of three-character strings, the codons) and the codon
dictionary, and returns a protein (a list of amino acid strings). To do this, go through
each codon in the RNA list, and add its associated amino acid (based on codonD) to a
new list. When you reach a "STOP" codon or the end of the RNA strand, return the
generated protein.

Note that you'll need to special-case the first codon in the list. If it is AUG, you should
add "START" to the protein instead of AUG's amino acid (Met), since Met encodes the
start of a sequence in this circumstance.

To test this function, run testGenerateProtein().

Note: technically, we aren't producing 100% accurate proteins with this system. We're
skipping a step in the translation process, where the RNA is 'spliced' to remove
unnecessary portions of the strand based on introns and exons. Unfortunately, there's
no simple rule to detect where an intron or exon is; in fact, there are whole research
teams dedicated to this question! We'll just produce slightly-inaccurate proteins for now.

Step 5: Synthesize Proteins [15pts]

Finally, we need to put all of the previous steps together in order to synthesize proteins
from our data file. This is where we start processing real data!

Implement the function synthesizeProteins(dnaFilename, codonFilename) in the
starter file. This program should read the DNA from the first filename (using readFile)
and produce a codon dictionary by calling makeCodonDictionary on the second
filename.

The program should then identify all of the RNA strands that can be produced from the
DNA by iterating through all the indexes in the DNA string, looking for the start code
(ATG) at each point. Note that you'll need to keep track of a list of proteins and a count
variable outside of the loop.

e If you identify an index in the DNA that corresponds to ATG, call dnaToRna()
starting from that index to extract the entire RNA sequence, then call
generateProtein() on the resulting RNA (and codon dictionary) to produce a
protein. That protein should be added to an overall protein list. Then update the
index in the DNA strand to skip past all the already-checked bases (by adding 3 *
the length of the RNA strand).

e If you get to an index that does not correspond to ATG, add one to the index, and
also add one to the count variable, as this is an unused base.

When you finish looping, you'll have two useful pieces of information: a list of all the
proteins synthesized from the DNA, and a count of all the bases that were not used.
Print out the total number of bases, the unused-base count, and the total number of
proteins synthesized. Then return the list of proteins.

To test this function, run testSynthesizeProteins(). Note that you will need to
manually check that the number of total bases/unused bases/proteins printed by the
program is correct; you can find the correct numbers for the tests in the comments of
the test function.

Now you're finished with the first stage of the project. Run the provided function
runWeekl () to put it all together. You should find that the human DNA synthesizes to
119 proteins (with 10560 unused bases), and the elephant DNA synthesizes to 77
proteins (with 6204 unused bases). Cool!

Check6-2 - due Friday 4/30 at noon EST

In the second stage of the project, you will analyze the protein sequences generated in
the first stage, to determine what the biggest commonalities and biggest differences are
between the two sequences. You will then automatically produce a text report
showcasing these results.

Before you start this second stage, go to the bottom of the starter file and uncomment
the four test lines associated with Week 2.

Step 0: Written Assignment [45pts]

In addition to completing the steps described below, there is a short written assignment
on the week's material. You can find the written assignment on the course website.

Step 1: Find Common Proteins [10pts]

First, you need to determine if there are any proteins that occur in both genes, and what
those proteins are. This will help determine how similar the two genes actually are.

Implement the function commonProteins(proteinListl, proteinList2) inthe
starter file. This function takes two lists of proteins (where each protein is a list of amino
acids) and returns a list of all the unique proteins that occur in both lists. Each protein
should only occur once in the result list, even if it shows up multiple times in both genes.

To test this function, run testCommonProteins().
Step 2: Combine Protein Lists [5pts]

It turns out that there aren't many proteins in common between our two genes at all.
Therefore, it's more interesting for us to consider what the biggest differences between
the two genes are. More specifically, we want to compare the amino acids generated by
the two genes, to see if anything in particular occurs more often in humans than
elephants, or vice versa.

To do this comparison, we first need to collapse the list of proteins into a list of the
amino acids that occur across all the proteins. Implement the function
combineProteins(proteinList) that takes a list of proteins (where each protein is a
list of amino acid strings) and returns a list of all the amino acids that occur across all
the proteins, in their original order. In other words, this function inputs a 2D list of strings
and outputs a 1D list of strings.

To test this function, run testCombineProteins().
Step 3: Generate Amino Acid Dictionary [5pts]

Once we have a list of amino acids, we can use it to generate a dictionary that maps
each amino acid in the list to a count of how often it occurs. We'll use this dictionary to
determine the frequencies of each amino acid- how common is each type in the gene?

Implement the function aminoAcidDictionary(aalList) in the starter file. This takes a
list of amino acids (strings), aaList, and returns a dictionary that maps each amino acid
to how often it occurs in the list.

To test this function, run testAminoAcidDictionary().
Step 4: Find Amino Acid Differences [20pts]

Now that we know how common each amino acid is, we can start comparing amino
acids between genes of different lengths. Because the genes have different lengths, we
can't just compare the counts of amino acids. Instead, we'll compare the frequencies of
amino acids- in other words, how frequently it occurs in the gene. We can determine the
frequency of an amino acid by finding its count (from aminoAcidDictionary()) and
dividing it by the total number of amino acids in the gene.

Implement the function findAminoAcidDifferences(proteinListl, proteinlList2,
cutoff) in the starter file. This takes two protein lists and a float cutoff and returns a list
of three-element lists, where the first element in the list is an amino acid, the second
element is the frequency of that amino acid in proteinList1, and the third element is
the frequency of that amino acid in proteinList2. You should only include amino acids
in this returned list if the difference between their frequencies is greater than the
provided cutoff. This cutoff is given as a decimal- in other words, 0.02 is 2%. You should
also not include the Start and Stop amino acids in the list, as they are not interesting for
this analysis (though they should still count towards the overall length of the gene).

To generate this list, you should first use your combineProteins() and
aminoAcidDictionary() functions to generate data about amino acid frequencies for
each protein list. Then go through each amino acid in the lists, and add each amino acid
if and only if the two frequencies are sufficiently different between the two genes. If an
amino acid does not occur in one of the two lists, its frequency is 0.

To test this function, run testFindAminoAcidDifferences().
Step 5: Generate Text Report [15pts]

Now that we have working functions for finding the major commonalities and differences
between genes, we need to display the results to the user. Implement the function
displayTextResults(commonalities, differences) in the starter file. This function
takes two lists - the list of common proteins between two genes, and the list of
most-different amino acids in the two genes - and prints out a textual report of those
results.

First, you should print out the common proteins. This part of the report should include a
short piece of text stating that these are the common proteins, and should display the
proteins in a readable format (not just as printed lists). You should also omit any
two-codon proteins in the list, as these are just empty ["Start", "Stop"] proteins.

Then, you should print out the most different amino acids. This part of the report should
include a short piece of text stating that these are the amino acids that occurred at the
most different rates, and for each amino acid should print out that rate for each
sequence in a readable format (again, not just a printed list). Hint: the built-in function
round may come in handy if you want to make the percentages more readable.

For each part of the report, you may choose to personalize the text as long as you
follow the requirements above. To test your function, run the provided function
runWeek2 (). Here's what our function produced; yours does not need to look 100%
identical, but should have approximately the same results.

The following proteins occurred in both DNA Sequences:
Ala

Gly

Lys

Ser-Pro-Leu

Thr

The following amino acids occurred at very different rates in the two DNA sequences:
Gly : 7.4% in Seq1, 6.66% in Seq2

Phe : 3.98% in Seq1, 5.26% in Seq2

Met : 2.13% in Seq1, 3.09% in Seq2

Arg : 6.01% in Seq1, 4.63% in Seq2

Lys : 4.96% in Seq1, 4.2% in Seq2

Thr: 4.02% in Seq1, 4.82% in Seq2

Tyr : 2.06% in Seq1, 2.6% in Seq2

lle : 3.07% in Seq1, 2.46% in Seq2

Hw6 - due Friday 5/07 at noon EST

In the final stage of the project, you will take the analysis results from the second stage
and use them to produce a bar chart which visually demonstrates the different
frequency rates of amino acids in the two p53 genes under investigation. You will use
the module matplotlib to do this visualization.

Before you start this last stage, go to the bottom of the starter file and uncomment the
four test lines associated with Week 3.

Step 0-A: Complete Check6-1 [20pts]

If you got a perfect score on Check6-1 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-1 and use it to update
your Check6-1 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working to improve your grade on these 20pts.

Step 0-B: Complete Check6-2 [20pts]

If you got a perfect score on Check6-2 (the project part), congratulations; this step is
already done! Go to the next step.

Otherwise, go back to your Gradescope feedback on Check6-2 and use it to update
your Check6-2 code. This is your chance to implement any features you might have
missed before, and fix any code that isn't working to improve your grade on these 20pts.

Step 1: Install matplotlib and numpy [0pts]
In order to use the matplotlib library, you will need to install it on your machine. If you do

not have a personal computer, note that the cluster machines on Gates 5 should have
matplotlib installed already.

To install matplotlib and one of its dependencies, numpy, we recommend that you use
the pip tool included in your Python installation. This tool will manage the installation
process for you, which is much easier than trying to install a module manually. To use
pip, open Pyzo and run the following lines of code in the interpreter:

pip install numpy
pip install matplotlib

If an error message occurs, try googling it to find a solution. TAs can also help debug
installation errors via Piazza or in office hours.

You can test whether the modules are correctly installed by running the following
commands in your interpreter. If they do not give you an error, you're good to go!

import numpy
import matplotlib

Step 2: Generate Chart Labels [10pts]

In order to plot our data using matplotlib, we first need to reformat it to fit the input that
matplotlib expects. This first part of this will involve making labels for the graph based
on all the amino acids that will be graphed.

Implement the function makeAminoAcidLabels(proteinListl, proteinList2) inthe
starter file. This takes two genes (where each gene is a protein list) and finds all the
amino acids that occur across both of the genes. This accounts for amino acids that
might occur in one gene but not the other. It should return a sorted list of all the amino
acids found.

We suggest that you use the previous functions combineProteins() and
aminoAcidDictionary() to simplify this function.

To test this function, run testMakeAminoAcidLabels().
Step 3: Generate Chart Data [15pts]
Next, we need to process our data into the format that matplotlib will accept for data

values. Specifically, we need to generate a list of frequencies, where each index i
contains the frequency in a particular gene for the i'th element of the labels list.

Implement the function setupChartData(labels, proteinList) in the starter file.
This takes a labels list (produced by makeAminoAcidLabels()) and a gene (a protein
list), and returns a frequency list as defined in the previous paragraph. If an amino acid
does not occur in the gene, set its frequency to 0.

We suggest that you again use the previous functions combineProteins() and
aminoAcidDictionary() to simplify this function.

To test this function, run testSetupChartData().
Step 4: Create a Bar Chart [15pts]

Now that we have labels and data, we can actually draw the comparison graph. For this
problem you are welcome to use and adapt code from the course slides and Matplotlib
website- just make sure to cite any code you use!

Implement the function createChart(xLabels, freqlListl, labell, freqlList2,
label2, edgelList=None) in the starter file, which draws a bar chart comparing two
genes based on their frequencies. xLabels is the list of amino acid labels (generated by
makeAminoAcidLabels()); freqlListl and freqList2 are the lists of amino acid
frequencies (generated by setupChartData()); labell and 1label2 are the names of
the gene represented by freqListl and freqList2. We'll discuss edgelList in more
depth in the next step; for now, you can ignore it.

We want to make a side-by-side bar chart that compares the two gene frequency lists.
To make a side-by-side bar chart, draw two bar charts on the same plot with their x
positions slightly offset and with a width smaller than @.5. You can set the width of a bar
with a keyword argument.

To create the x values, you can either use a numpy . arange and the length of the
xLabels list (as is shown in the Matplotlib example), or you can construct two lists of
integer positions by looping over the indexes (one list has each index minus half the
width, the other has each index plus half the width). For example, to graph four bars
side-by-side, the first set of data might be graphed at [-0.35, 0.65, 1.65, 2.65]
while the second would be graphed at [©.35, 1.35, 2.35, 3.35].

Your bar charts should include x tick labels (based on xLabels) and legend labels
(based on labell and label2). You can use keyword arguments to set up these labels.
You'll need to make a separate call on plt to set up the legend - check the API to find
what that method name is!

To test this function, run testCreateChart(). You should produce a chart that looks
like the following image:

0.30

I Ex1
Ex2
0.25 A

0.20 4
0.10 4

- l I_l
0.00 - T T

Asp Cys Glu His Leu Met Phe Pro Start Stop Tyr Val

€| +Q/=|

Step 5: Outline Different Edges [10pts]

Finally, to make our amino acids chart a little more advanced, we'll incorporate the

results of our analysis from Stage 2. We'll set the edge color of the amino acid bars
which are sufficiently different to be a different color than the bars of the rest of the

amino acids, to make them stand out.

Implement the function makeEdgelList(labels, biggestDiffs) in the starter file. This
takes a list of labels (generated by makeAminoAcidLabels()) and a list of
biggest-difference amino acids (generated by findAminoAcidDifferences()). This
function returns a new list, the same length as the labels list, where each element of
the list is "black" if the corresponding amino acid is in the biggestDiffs list and
"white" otherwise.

Recall that biggestDiffs contains three-element lists, and that the first element of
each three-element list is the amino acid. You'll have to check that part of the inner list
to see if biggestDiffs contains a specific amino acid.

To test this function, run testMakeEdgelList().

Once your makeEdgeList () function is working, update your createChart () function
so that the bar plots to include the keyword argument edgecolor, which controls the
colors of the bars' edges (None by default). Set it to use the passed-in edgelList
instead. Once you've made this update, the bar chart generated at the end of
testMakeEdgeList () should look like the picture below. Note that the bars for Cys,
Leu, Met, Phe, Pro, Tyr, and Val appear bolder because they're been outlined in black.

T 1
IZX] Figure 1 . O x|

| 0.30
! mm Ex1
| . Ex2

0.25 1

0.20 -
0.15 4
0.10 '

0.05

0.00 - - |
Asp Cys Glu His Leu Met Phe Pro Start Stop Tyr Val

#l€> +Q=B - |

Step 6: Put It All Together [10pts]

You've finally finished implementing all the features of the project. Now, you just need to
put them all together.

Implement the function runFullProgram() in the starter file. This function should load
the DNA data in your two p53 files, process them both into protein lists, generate a text
report comparing the two genes (with a 0.5% cutoff for differences), and then generate a
bar chart comparing the two genes (with the sufficiently-different amino acids outlined in
black).

When you run this function, you should be able to view the results of all of your analysis.
Congratulations- you're done!

For extra fun, try downloading different genes from NIH and load them into your
runFullProgram function. You should be able to compare them the same way you
compared the p53 genes.

