
15-110 Hw5 - Written Portion

Name:

AndrewID:

#1 - Levels of Concurrency - 6pts

Which of the following concepts does not involve running multiple tasks at exactly the
same time? Select all answers that apply.

☐ Circuit-level concurrency
☐ Multitasking
☐ Multiprocessing
☐ Distributed Computing

For each answer you select, write up to 20 words about what that concept does instead.

#2 - Concurrency Trees - 9pts

Exponentiation (raising a base to a power, like 24) can be computed concurrently by first
multiplying pairs of bases (e.g., 2*2) together, and then multiplying those products
together (4*4), and continuing until there is only one answer (16).

Draw a concurrency tree that computes 27 and upload your tree into the next page. You
can do this with a picture of a physical drawing or an online image editing tool (like
Google Drawings). To upload the image, use the same approach you used on Hw2.
Note that you should only use multiplication as operations, not exponentiation.

How many total steps does this tree take?

How many time steps does this tree take?

#3 - Parallelization Problems - 2pts

The following scenarios all depict potential problems while parallelizing. Which of these
scenarios is the best depiction of deadlock? Select one answer.

☐ Two students are both trying to edit a google doc at the same time, and their text
keeps getting mixed up and overlapped.

☐ Two students both want to paint the fence at the same time, but one has the
paintbrush and the other has the paint bucket, so no painting gets done.

☐ Two students are tallying votes in an organization, but they keep erasing and
writing over each other's results, so some votes are lost.

☐ Two students are trying to split the work of a group assignment, but can't figure
out how to split up the problems so that they can be done at the same time.

#4 - Pipelining - 10pts

Note that this problem continues on the next page.

A factory with four workers produces custom t-shirts. To make a t-shirt, the
workers follow these steps:

● [S] Set up supplies (for measuring) (5 minutes)
● [M] Measure the fabric (5 minutes)
● [S] Set up supplies (for cutting) (5 minutes)
● [C] Cut out the pattern (5 minutes)
● [S] Set up supplies (for sewing) (5 minutes)
● [W] Sew it all together (5 minutes)
● [F] Fold the shirt (5 minutes).

Note that setup occurs once before starting either measuring, cutting, or sewing. When
you set up new supplies for a task, you put away the supplies for the previous task.

Originally each worker made one shirt at a time, with all four workers working in parallel.
Each of the cells in the following table represents five minutes, with the whole table
representing an hour of work. Fill in the cells with the letters representing the steps to
demonstrate the original system the factory used.

Worker 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55

A

B

C

D

How many complete, folded shirts could be made by
four workers in one hour with the original system?

Recent budget changes have led to new restrictions on materials. Now the workers
have to share a single sewing machine; in other words, only one worker can sew at any
given point in time. They decide to use a new approach to make things more efficient.

Create a new schedule that uses pipelining to increase the efficiency of the
shirt-making process. (Hint: think about the most efficient way to split up the tasks.)

Worker 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55

A

B

C

D

How many complete, folded shirts could be made by four
workers in one hour using the new pipeline?

#5 - MapReduce - 10pts

Suppose we implement a MapReduce task to compute how many words in a collection
of files have the string "the" in them (e.g., "them" and "whether"). Describe at a high
level what values this specific mapper function would input and output, what values this
reducer would input and output, and what actions the manager function would take.

Mapper Input Value(s)

Mapper Output Value(s)

Reducer Input Value(s)

Reducer Output Value(s)

Manager Actions

#6 - Internet Definitions - 4pts

Fill in the blanks in the following statements with appropriate terms from the Internet
lecture.

The internet relies on ____________________ to pass packets around the world
between computers.

The DNS server translates URLs into ____________________, and passes that
information back to your computer.

#7 - Internet Communication Process - 2pts

How is a website sent across the internet to your web browser? Select one answer.

☐ The server creates a packet of the whole website and sends it as fast as possible
to your browser

☐ The server zips up the website to make it as small as possible so none of the
data gets lost

☐ The server splits the website into packets and makes sure they all get there in
the right order

☐ The server creates packets and sends them all to your browser, which puts them
together in the right order

#8 - Internet Fault Tolerance - 6pts

Which of the following scenarios could lead to you being unable to visit www.cmu.edu?
Select all answers that apply.

☐ Your computer goes down
☐ Your ISP goes down
☐ A router goes down
☐ A DNS server goes down
☐ A CMU server goes down
☐ All of the CMU servers go down

#9 - Security Definitions - 4pts

Very briefly, and in your own words, what is the difference between authentication and
encryption?

http://www.cmu.edu

#10 - Security Attacks - 8pts

For the two following questions, select all answers that apply.

In a Distributed Denial of Service (DDOS) attack, the attacker might do the following to
overload the server and make the server stop replying to data requests:

☐ Send a small message disguised to look like it's from another person
☐ Send many many different small messages
☐ Send a request for data that doesn't exist on the server
☐ Send a request for a lot of data that will require lots of packets in a response

In a Man in the Middle attack, the attacker:

☐ Listens on computer networks for unencrypted usernames and passwords or
other data

☐ Writes a virus that listens to data passed between your operating system and
regular programs

☐ Uses social engineering to trick people into sharing their usernames and
passwords

☐ Puts ads into websites that track everything you do on the website

#11 - RSA Encryption - 4pts

Subra wants to send Farnam a message encrypted using RSA. What step(s) would
Subra have to take while generating a message to ensure that Farnam can decrypt and
read the message?

#12 - Cracking Codes - 5pts

We want to modify the Caesar Cipher algorithm to make it harder to crack. To do this,
we double the number of letters that can be substituted in the algorithm by
distinguishing between lowercase and uppercase letters. So the entire string of
characters we rotate looks like this:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

What is the new keyspace of our modified Caesar Cipher?

Does this change the runtime of breaking the modified Caesar Cipher to be in a new
function family? Why or why not?

15-110 Hw5 - Programming Portion

These problems should be solved in the starter file available on the course website.
Submit your code to the Gradescope assignment Hw5 - Programming for autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

Programming is not a core part of Unit 3. Therefore, we will use this assignment to
prepare you for Hw6. You will write five functions and these functions will work together
to create an interactive, text-based game of Memory.

In the game Memory you start with a deck of matched cards. Place the cards face-down
on the table. In each turn you get to flip over two face-down cards. If they match, they
stay face-up; if they don't, you have to flip them face-down again. The goal is to flip all
the cards face-up in as few turns as possible. If you've never played Memory before, try
it out here: https://www.helpfulgames.com/subjects/brain-training/memory.html

The first three functions can be solved with just the skills you've learned in prior units;
we encourage you to write these early. Functions #4 and #5 will be easier to solve after
the Managing Large Code Projects lecture.

#1 - generateBoard(words) - 3pts

First, we need to set up the initial board of cards. Each card is represented by a two
item list: the first item is the card's value (a string), the second is a Boolean representing
whether the card is face-down or face-up (False for face-down, True for face-up).

Write the function generateBoard(words) which takes a list of strings and returns a
board (a 2D list holding cards, which are 1D lists). The function should create two cards
for each of the words in the list, both with initial flipped values of False (since we want
all the cards in our game to begin face-down). Once all cards have been added to the
board, shuffle the board so the cards are in a random order. Use the built-in function
random.shuffle(list) which destructively shuffles the list (returning None) to do this.

For example, if we call generateBoard(["dog", "cat"]), it might return [["dog",

False], ["cat", False], ["cat", False], ["dog", False]], though the inner
lists could also be in a different random order.

https://www.helpfulgames.com/subjects/brain-training/memory.html

#2 - displayBoard(board) - 4pts

Next, we need to be able to display the board to the user. We'll display each card as its
value if it is face-up, or the string "???" if it is face-down.

Write the function displayBoard(board) which takes a board (a 2D list containing
cards as described above in generateBoard) and prints the board, returning None. Each
card on the board will be printed on a separate line. The line should contain the index of
the card and the card's value (or ??? if it is face-down). You can format the printed line
however you like as long as those two pieces of information are included and each card
is printed on a separate line.

For example, if we call displayBoard([["dog", False], ["cat", True],

["cat", False], ["dog", True]]), (the list above, but with the first "cat" and
second "dog" face-up), it might print:

0: ???

1: cat

2: ???

3: dog

#3 - getFlippedCards(board) - 3pts

We'll need to determine which cards on the board have been flipped to tell when the
game is over. Write the function getFlippedCards(board) which takes the board (a
2D list containing cards as described above) and returns a 1D list of integers. This
function should go through each card on the board and add that card's index in the
board list to a result list if the card is face-up. The list of indexes should be returned at
the end.

For example, if we call getFlippedCards([["dog", False], ["cat", True],

["cat", False], ["dog", True]]) it will return [1, 3], because the first and
third elements are face-up. If no cards are face-up, just return an empty list.

#4 - pickIndex(board) - 10pts

To make the game interactive we'll let the user choose which cards to flip over on each
turn by typing in the indexes of the cards they want to flip into the interpreter. We'll have
to make sure to handle bad user inputs without crashing the program!

Write the function pickIndex(board) which takes a board (a 2D list containing cards
as described above) and returns the index of the card to be flipped (an int). The function
should ask the user to pick a card index. If the index is not an integer, or not in the
range of the board, or is the index of a card that has already been flipped, the function
should print out an appropriate error message and ask the user for an index again.
When the user enters a valid index, that index should be returned as an integer.

For example, if we call pickIndex([["owl", False], ["dog", True], ["cat",

False], ["cat", False], ["owl", False], ["dog", True]]) we might end up
with the following interaction. User input is bolded.

Pick a card index: test

That's not an integer!

Pick a card index: -1

Out of range. Pick a valid card.

Pick a card index: 6

Out of range. Pick a valid card.

Pick a card index: 1

You've already flipped that card. Pick a different card.

Pick a card index: 2

The function would then return the integer 2. Your prompts and error messages don't
have to be the same as ours, but they should exist and provide relevant information.

We will manually grade this problem. To test it yourself, run testPickIndex() and try
entering non-integers, numbers out of range, and indexes that have already been
flipped, as shown above.

Hint: use the board to help determine what is in range and whether the chosen index
has already been flipped.

Hint 2: if you're stuck, look at our tic-tac-toe example from the Managing Large Code
Projects lecture. How did we implement taking turns?

#5 - playMemoryGame(words) - 10pts

Now we finally have everything we need to actually implement the game! You must use
the four functions written above as helper functions to streamline the game code.

Write the function playMemoryGame(words) which takes a list of words (1D list of
strings), sets up a memory game based on those words, and runs the game with the
user until all cards have been flipped. Let's break this down into smaller steps.

A. First, welcome the player to the game and generate a new board based on the
cards and show the starting board to the user. You'll want to call generateBoard
and displayBoard for this.

B. Second, set up a loop that continues until the game is finished. The game is
done when every card in the board has been flipped. To check this, look at
whether getFlippedCards contains every card in the board or not. When the
game is over, congratulate the user on winning.

C. Third, in each iteration of the loop, have the user pick indexes for two cards that
they want to flip face-up. After a valid index is picked the card at that index on the
board should have its flipped value set to True and the board should be
displayed again. You'll need to do this twice- once for the first card and again for
the second. You'll want to call pickIndex and displayBoard here.

D. Fourth, check whether the two cards that were flipped match by comparing their
values. If they match, leave them face-up; if they don't match, set both flipped
values to face-down (False) again. In either case, print out an appropriate
message to the user, then print some kind of line break to show that the next turn
has begun.

E. Finally, keep track of the number of turns the user takes to clear the board. A turn
is a single iteration of the loop (flipping two cards and seeing if they're a match).
You should print out the number of moves taken at the end of the game.

Once this function is finished, you're done! Play your game to test out how it works.

If we call playMemoryGame(["dog", "cat"]), here's an example of what a full
game might look like. User inputs have been bolded. Your game prompts don't need to
be identical to ours, but they should convey the same information.

Welcome to Memory!

0: ???

1: ???

2: ???

3: ???

Pick a card index: 0

0: dog

1: ???

2: ???

3: ???

Pick a card index: 2

0: dog

1: ???

2: cat

3: ???

Try again!

Pick a card index: 1

0: ???

1: cat

2: ???

3: ???

Pick a card index: 2

0: ???

1: cat

2: cat

3: ???

Good guess!

Pick a card index: 0

0: dog

1: cat

2: cat

3: ???

Pick a card index: 2

You've already flipped that card. Pick a different card.

Pick a card index: 3

0: dog

1: cat

2: cat

3: dog

Good guess!

Good game! You took 3 moves to clear the board.

	Circuitlevel concurrency: Off
	Multitasking: Off
	Multiprocessing: Off
	Distributed Computing: Off
	For each answer you select write up to 20 words about what that concept does instead:
	How many total steps does this tree take:
	How many time steps does this tree take:
	Two students are both trying to edit a google doc at the same time and their text: Off
	Two students both want to paint the fence at the same time but one has the: Off
	Two students are tallying votes in an organization but they keep erasing and: Off
	Two students are trying to split the work of a group assignment but cant figure: Off
	0000A:
	0005A:
	0010A:
	0015A:
	0020A:
	0025A:
	0030A:
	0035A:
	0040A:
	0045A:
	0050A:
	0055A:
	0000B:
	0005B:
	0010B:
	0015B:
	0020B:
	0025B:
	0030B:
	0035B:
	0040B:
	0045B:
	0050B:
	0055B:
	0000C:
	0005C:
	0010C:
	0015C:
	0020C:
	0025C:
	0030C:
	0035C:
	0040C:
	0045C:
	0050C:
	0055C:
	0000D:
	0005D:
	0010D:
	0015D:
	0020D:
	0025D:
	0030D:
	0035D:
	0040D:
	0045D:
	0050D:
	0055D:
	How many complete folded shirts could be made by four workers in one hour with the original system:
	0000A_2:
	0005A_2:
	0010A_2:
	0015A_2:
	0020A_2:
	0025A_2:
	0030A_2:
	0035A_2:
	0040A_2:
	0045A_2:
	0050A_2:
	0055A_2:
	0000B_2:
	0005B_2:
	0010B_2:
	0015B_2:
	0020B_2:
	0025B_2:
	0030B_2:
	0035B_2:
	0040B_2:
	0045B_2:
	0050B_2:
	0055B_2:
	0000C_2:
	0005C_2:
	0010C_2:
	0015C_2:
	0020C_2:
	0025C_2:
	0030C_2:
	0035C_2:
	0040C_2:
	0045C_2:
	0050C_2:
	0055C_2:
	0000D_2:
	0005D_2:
	0010D_2:
	0015D_2:
	0020D_2:
	0025D_2:
	0030D_2:
	0035D_2:
	0040D_2:
	0045D_2:
	0050D_2:
	0055D_2:
	How many complete folded shirts could be made by four workers in one hour using the new pipeline:
	Mapper Input Values:
	Mapper Output Values:
	Manager Actions:
	Reducer Input Values:
	Reducer Output Values:
	to pass packets around the world:
	and passes that:
	The server creates a packet of the whole website and sends it as fast as possible: Off
	The server zips up the website to make it as small as possible so none of the: Off
	The server splits the website into packets and makes sure they all get there in: Off
	The server creates packets and sends them all to your browser which puts them: Off
	Your computer goes down: Off
	Your ISP goes down: Off
	A router goes down: Off
	A DNS server goes down: Off
	A CMU server goes down: Off
	All of the CMU servers go down: Off
	encryption:
	Send a small message disguised to look like its from another person: Off
	Send many many different small messages: Off
	Send a request for data that doesnt exist on the server: Off
	Send a request for a lot of data that will require lots of packets in a response: Off
	Listens on computer networks for unencrypted usernames and passwords or: Off
	Writes a virus that listens to data passed between your operating system and: Off
	Uses social engineering to trick people into sharing their usernames and: Off
	Puts ads into websites that track everything you do on the website: Off
	read the message:
	What is the new keyspace of our modified Caesar Cipher:
	function family Why or why not:
	Text4:
	Text5:
	Button6:

