15-110 Hw4 - Written Portion

Name:

AndrewlD:

#1 - Tree Identification - 10pts

For each of the following trees, determine whether or not it is a Binary Search Tree.

[1BST [1BST
[] Not BST [] Not BST
() ()
OJORO (5L (B)
(2)) (1 @@ @
[1BST [1BST
[] Not BST [] Not BST
()
OO
ONOIONO
] BST

[] Not BST

#2 - Searching a BST - 9pts

Given the Binary Search Tree shown below:

What series of numbers would you visit if you ran a search algorithm that looked for 197

What series of numbers would you visit if you ran a search algorithm that looked for 47

What series of numbers would you visit if you ran a search algorithm that looked for 107?

#3 - Searching a Graph - 12pts

For this problem, note that each prompt has multiple correct answers; you only need to
include one. We recommend that you visit neighbors in alphabetical order.

Given the undirected graph shown below, where the letter A is the start node:

What series of letters could you visit if you ran Depth-First Search to find H?
(For this and the following problems, there is more than one correct answer.)

What series of letters could you visit if you ran Breadth-First Search to find H?

What series of letters could you visit if you ran Depth-First Search to find J?

What series of letters could you visit if you ran Breadth-First Search to find J?

#4 - P and NP Identification - 10pts

For each of the following problems, identify whether the problem is in the complexity
class P, NP, or neither. You should choose just one class (the one that best describes

the problem).

Finding the smallest value in a] P
tree [J] NP

[J Neither
Scheduling final exams for CMU O P
so that there are no conflicts [J NP

[J Neither
Determining if an item is in a list O P

[0 NP

[] Neither
Finding the best (fastest) road O P
route through Pittsburgh that [J NP
takes you over every bridge. [] Neither
Determining if there is a set of O P
inputs that makes a circuit [0 NP
output 1 [J] Neither

#5 - Tractability - 6pts

Select whether each of the following function families is tractable or intractable.

O(n) [] Tractable L] Intractable
o(n!) [] Tractable L] Intractable
o2 [] Tractable [] Intractable
o(n?) [] Tractable [] Intractable
O(log n) [] Tractable L] Intractable
O(n'%) [] Tractable L] Intractable

#6 - P vs NP - 9pts
Which of the following is the best definition of the complexity class P?

[] The set of problems that can be solved in polynomial time
[] The set of problems that can be verified in polynomial time

[] The set of problems we discussed in lecture (Travelling Salesperson, Subset
Sum, etc)

Which of the following is the best definition of the complexity class NP?

[] The set of problems that can be solved in polynomial time
[] The set of problems that cannot be solved in polynomial time
[] The set of problems that can be verified in polynomial time
[] The set of problems that cannot be verified in polynomial time

[] The set of problems we discussed in lecture (Travelling Salesperson, Subset
Sum, etc)

Why does it matter whether or not P = NP? Choose the best answer.

[If they are the same, we'll be able to solve hard and useful problems a lot faster
[If they are the same, we'll need to change how we implement some adversarial
algorithms, like encryption, to keep them from being broken easily

[If they are not the same, we can spend less time trying to invent super-fast
solutions to hard but useful problems

[] All of the above

#7 - Recognizing Data Structures - 5pts

For each of the following types of data, choose the data structure that would be the
best/most natural choice to represent the data

Carnegie Mellon's] 1D List
organizational structure: [2D List
ie, departments within -
’ [Dict
each college, and majors ctionary
within each department) Tree
[] Graph
[] 1D List
A chess board that has [] 2D List
pieces located at specific (] Dictionary
row-column positions
L] Tree
[] Graph
[] 1D List
A set of chores you need] 2D List
to do over the weekend (] Dictionary
L] Tree
[] Graph
[] 1D List
The subway map for [] 2D List
London [Dictionary
L] Tree
[] Graph
[] 1D List
A deck of flashcards with [] 2D List
words on one side and [Dictionary
definitions on the other 1 Tree

[] Graph

#8 - Search Efficiencies - 8pts

For each of the following prompts, consider the search algorithms we've discussed in
class to determine the optimal Big-O runtime for the given situation.

We store a music collection in a 1 O(1)
dictionary mapping artists to lists of 1 O(log n)
their songs. What is the runtime to 0 o(n)
find whether a specific artistis in a
collection if n is the size of the L) O(n log n)
dictionary? [1 O(n?)

L] O@2)

We store a game of 20 questions in

a binary tree where each node is a [o(1)
question whose left branch answers

o . [] O(log n)
yes' and whose right branch

answers 'no'. The leaves hold all 1 O(n)
eventual solutions. What is the [] O(n log n)
runtime to determine whether any of [O(n?)

the answer paths lead to the solution 0 02"
'octopus’ if n is the number of nodes

in the tree?

We store all current players in the o)
Basketball Hall of Fame in a list, L] O(log n)
organized alphabetically by name. [1 O(n)
What is the runtime to find whether a [O(nlog n)
specific player is in the Hall of Fame [o(n?)

if n is the length of the list? O o(27)

We make a graph of everyone in the Lhom
world where two people are [O(log n)
connected if they have ever met. L1 O(n)
What is the runtime to find if there is 1 O(n log n)
a chain of introductions that links [O(n?)

you to Oprah Winfrey if n is the 0 o)

number of nodes in the graph?

https://en.wikipedia.org/wiki/Twenty_questions

#9 - Optimizing for Search - 6pts

You have been given a very large dataset of temperatures (represented as floats), and
your task is to find the most extreme temperatures that fall into a given temperature

range (such as 40 degrees to 50 degrees, or 75.7 degrees to 78.2 degrees). To do this,
you want to store the data in a data structure so that, given any range, you'll be able to:

e find the smallest value in the structure that falls in that range
e find the largest value in the structure that falls in that range

You want to optimize how quickly you can run the algorithm shown above,
assuming the data structure has already been created. In other words, you don't
know what range you'll need to check when you create the structure.

Choose the best search algorithm + data structure combination for the task. There might
be multiple correct answers; you only need to choose one per question.

Search Algorithm: Data Structure:
[] Linear Search [] Sorted List of degrees
[] Binary Search [] Dictionary mapping degree->count
[] Hashed Search [] Binary Search Tree of degrees

[] Breadth-First Search [] Graph connecting close degrees

15-110 Hw4 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Hw4 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - findParents(t, name) -15pts

Write the function findParents(t, name) which takes a genealogical family tree in the
form of a binary tree (as discussed in class) and a string, the name of a person. If the
person exists in the tree, the function returns a list containing their parents.

You'll need to use if statements to separate the four possible arrangements of parents.
Return an empty list if the parents are unknown, a singleton list in the two cases where

only one parent is known, and a two-element list if both parents are known. If the person
does not exist in the tree, the function returns None. You are guaranteed that every

name in the tree only shows up once (to avoid conflicting information).

For example, consider the following family tree (as shown in the course slides):

t = { "contents" : "Arya",
"left" : { "contents" : "Ned",
"left" : { "contents" : "Rickard",
"left" : None, "right" : None },
"right" : { "contents" : "Lyarra",
"left" : None, "right" : None } },
"right" : { "contents" : "Catelyn",
"left" : { "contents" : "Hoster",
"left" : None, "right" : None },
"right" : { "contents" : "Minisa",
"left" : None, "right"™ : None } } }

If we called findParents(t, "Ned"), the function would return the list

["Rickard", "Lyarra"].If we called findParents(t, "Rickard"), the function
would return []. If we called findParents(t, "Jon"), the function would return None
because "Jon" is not in the tree.

Hint 1: treat this like a recursive search problem (in fact, you might want to reference
tree linear search and binary search if you get stuck). You'll need to make two base
cases - one for when you find the person, one for when you reach a leaf or an empty
tree. For this problem, it may be easier to set up the base case as an empty tree.

Hint 2: unlike recursive binary search, you need to check both branches of the tree to
see if the person occurs in either branch. How can you combine their results? If one of
the branches gives you a list, you've found the parents - return them immediately. If you
get None, try again on the other branch. If both branches return None, then the name
was not found and you should return None.

#2 - getPrereqgs - 10pts

College course prerequisites are notoriously complicated. However, we can make them
a little easier to understand by representing the course dependency system as a
directed graph, where the nodes are courses and an edge leads from course A to
course B if A is a prerequisite of B. For example, the core Computer Science courses
(almost) produce the following prereq graph:

Which would be represented in code as:

g = { "110" : [1,

||112n : ["122" "156":',

"122" . ["213", "21e", "251", "281"],
"151" : ["15@", "251", "281"],

"15@" : ["21e", "251"],

"213" : [],

"210" : [],

"251" : [],

"281" : [] }

Write the function getPrereqs(g, course) that takes a directed graph (in our
adjacency list dictionary format, without weights) and a string (a course name) and
returns a list of all the immediate prerequisites of the given course. If we called
getPrereqs on our graph above and "210", for example, the function should return
["122", "150"].

Hint: you can't just return the neighbors of the course, because the edges are going in
the opposite direction! Instead, iterate over all the nodes to find those that have the
course as a neighbor. Construct a new list out of these nodes as the result.

	BST: Off
	Not BST: Off
	BST_2: Off
	Not BST_2: Off
	BST_3: Off
	Not BST_3: Off
	BST_4: Off
	Not BST_4: Off
	BST_5: Off
	Not BST_5: Off
	What series of numbers would you visit if you ran a search algorithm that looked for 19:
	What series of numbers would you visit if you ran a search algorithm that looked for 4:
	What series of numbers would you visit if you ran a search algorithm that looked for 10:
	For this and the following problems there is more than one correct answer:
	What series of letters could you visit if you ran BreadthFirst Search to find H:
	What series of letters could you visit if you ran DepthFirst Search to find J:
	What series of letters could you visit if you ran BreadthFirst Search to find J:
	Tractable: Off
	Tractable_2: Off
	Tractable_3: Off
	Tractable_4: Off
	Tractable_5: Off
	Tractable_6: Off
	Intractable: Off
	Intractable_2: Off
	Intractable_3: Off
	Intractable_4: Off
	Intractable_5: Off
	Intractable_6: Off
	The set of problems that can be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time: Off
	The set of problems we discussed in lecture Travelling Salesperson Subset: Off
	The set of problems that can be solved in polynomial time_2: Off
	The set of problems that cannot be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time_2: Off
	The set of problems that cannot be verified in polynomial time: Off
	The set of problems we discussed in lecture Travelling Salesperson Subset_2: Off
	If they are the same well be able to solve hard and useful problems a lot faster: Off
	If they are the same well need to change how we implement some adversarial: Off
	If they are not the same we can spend less time trying to invent superfast: Off
	All of the above: Off
	1D List: Off
	2D List: Off
	Dictionary: Off
	Tree: Off
	Graph: Off
	1D List_2: Off
	2D List_2: Off
	Dictionary_2: Off
	Tree_2: Off
	Graph_2: Off
	1D List_3: Off
	2D List_3: Off
	Dictionary_3: Off
	Tree_3: Off
	Graph_3: Off
	1D List_4: Off
	2D List_4: Off
	Dictionary_4: Off
	Tree_4: Off
	Graph_4: Off
	1D List_5: Off
	2D List_5: Off
	Dictionary_5: Off
	Tree_5: Off
	Graph_5: Off
	O1: Off
	Olog n: Off
	On: Off
	On log n: Off
	On2: Off
	O2n: Off
	O1_2: Off
	Olog n_2: Off
	On_2: Off
	On log n_2: Off
	On2_2: Off
	O2n_2: Off
	O1_3: Off
	Olog n_3: Off
	On_3: Off
	On log n_3: Off
	On2_3: Off
	O2n_3: Off
	O1_4: Off
	Olog n_4: Off
	On_4: Off
	On log n_4: Off
	On2_4: Off
	O2n_4: Off
	Linear Search: Off
	Binary Search: Off
	Hashed Search: Off
	BreadthFirst Search: Off
	Sorted List of degrees: Off
	Dictionary mapping degreecount: Off
	Binary Search Tree of degrees: Off
	Graph connecting close degrees: Off
	Text3:
	Text4:
	Check Box5: Off
	Check Box6: Off
	Check Box7: Off
	Check Box8: Off
	Check Box9: Off
	Check Box10: Off
	Check Box11: Off
	Check Box12: Off
	Check Box13: Off
	Check Box14: Off
	Check Box15: Off
	Check Box16: Off
	Check Box17: Off
	Check Box18: Off
	Check Box19: Off

