15-110 Hw2 - Written Portion
Name:

AndrewlD:

#1 - Expression to Truth Table and Circuit - 11pts

Given the Boolean expression shown below, fill out the truth table to perform the same
operation as the expression. You may not need to use all the given rows. Then create a
circuit that performs the same operation as the expression.

(x and y) or (not (y xor z))

x value y value z value output value

For the circuit, you may use logic.ly, a different circuit simulator tool, or you may draw
the circuit by hand. You can click on the box on the next page to upload an image into it;
if that does not work, use a PDF editing tool (like Preview or smallpdf.com/edit-pdf) to
insert the image manually. Make sure to delete the blank page if you do this.

If you have trouble getting your image into the PDF, contact the course staff for help.

https://smallpdf.com/edit-pdf

Click here to add your image

#2 - Loop Control Variable Values - 9pts

Each of the following problem prompts could be implemented using a while loop.
Identify the start value, continuing condition, and update action for the loop control
variable you would use in that while loop. Assume that the loop control variable will be
outputted at the beginning of the loop, and no conditional will be used. We've given an
example of what this looks like in the first line

Ex) Output the numbers from 1 to 10, inclusive.
A) Output all even numbers between 2 and 20, exclusive on 20 (but not 2).
B) Output the numbers from 10 to 1, inclusive on both.
C) Output the numbers 3, 9, 15, 21.

Prompt Start Value Continuing Condition Update Action
Ex 1 x<=10 X=x+1
A

#3 - Code Tracing with Strings - 10pts
Assuming that the following two lines of code have been run:

sl
s2

"15-110 is cool™
"CMU rocks!™

What will each of the following expressions evaluate to? Don't just run the code in the
editor- try to figure out the answer on your own.

Expression Value

s1[7] + s2[6]

s1[1] + s2[len(s2)-1]

s1[4:8]

s2[2:1en(s2)-2]

sl[::4]

#4 - Tracing Lists - 5pts

Trace the code below, then fill in the table with what it prints (one row per line).
You might not need to use all of the rows.

oylist = F "8, "™, .02, 3.2, 4. 8; 28, 29, 38 1
half = len(myList) // 2
for i in range(half):

print(myList[i], myList[i + half])

#5 - 2D Lists - 5pts

Fill in the following table with the values in the 2D list returned by mysteryFunction.
Write an X in the squares that are outside the bounds of the list.

def mysteryFunction(x, y):

myList = []
for 1 in range(x):
lst = []
] =0
while j < y:
if jJ <= i:
lst.append("0")
else:
lst.append("-")
j =3 +1

myList.append(lst)
return mylList
matrix = mysteryFunction(6, 5)

15-110 Hw2 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Hw2 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - printTriangle(n) - 10pts

Write a function printTriangle(n) which prints an ascii art triangle out of asterisks
based on the integer n. For example, printTriangle(5) would print the following:

*
*%
k%
*%

*

Note that the triangle is five lines long, with the top and bottom line each having only
one asterisk, the second and second-from bottom lines each having two asterisks, etc.
So printTriangle(9) would look like:

*

*%
*k*k
*kkk
*kkkk

*kkk

You'll want to create a loop where each iteration prints a single line of the triangle. To
draw multiple stars on a single line, consider using a nested loop or the * operator.

Note: n is guaranteed to be positive and odd.
Hint: how can the program switch from increasing numbers of stars to decreasing?

Consider using a conditional to check when you hit the midpoint, or two separate loops
(one going up, one going down).

#2 - printPrimeFactors(x) - 10pts

Write the function printPrimeFactors(x) which takes a positive integer x and prints
all of its prime factors in a nice format.

A prime factor is a number that is both prime and evenly divides the original number
(with no remainder). So the prime factors of 70 are 2, 5, and 7, because 2 *5* 7 = 70.
Note that 10 is not a prime factor because it is not prime, and 3 is not a prime factor
because it is not a factor of 70.

Prime factors can be repeated when the same factor divides the original number
multiple times; for example, the prime factors of 12 are 2, 2, and 3, because 2 and 3 are
both prime and 2 * 2 * 3 = 12. The prime factors of 16 are 2, 2, 2, and 2, because 2 * 2 *
2* 2 =16. We'll display repeated factors on a single line as a power expression; for
example, 16 would display 2 ** 4, because 2 is repeated four times.

Here's a high-level algorithm to solve this problem. To find factors manually, iterate
through all possible factors. When you find a viable factor, repeatedly divide the
number by that factor until it no longer evenly divides the number. Our algorithm looks
something like this:

1. Repeat the following procedure over all possible factors (2 to x)
a. If x is evenly divisible by the possible factor
i. Setanumber countto be 0
i. Repeat the following procedure until x is not divisible by the
possible factor

1. Set count to be count plus 1
2. Set x to x divided by the factor

iii. If the number count is exactly 1
1. Print the factor by itself

iv. If the number count is greater than 1
1. Print"f ** c", where f is the factor and c is the count

As an example, if you call printPrimeFactors(600), it should print
2**3

3
5% 2

#3 - getSecretMessage(s, key) - 10pts

You can hide a secret message in a piece of text by setting a specific character as a
key. Place the key before every letter in the message, then fill in extra (non-key) letters
between key-letter pairs to hide the message in noise.

For example, to hide the message "computer" with the key "q", you would start with
"computer”, turn it into "qgecqogmqgpqugqtgeqr”, and then add extra letters as noise,

perhaps resulting in "orupqcrzypqomgmhcyqgpwhhqutqtxtgeyeqrpa”. To get the
original message back out, copy every letter that occurs directly after the key, ignoring
the rest.

Write a function getSecretMessage(s, key) that takes a piece of text holding a secret
message and the key to that message and returns the secret message itself. For

example, if we called the function on the long string above and "q", it would return
"computer”. You are guaranteed that the key does not occur in the secret message.

Hint: loop over every character in the string. If the character you're on is the key, add
the next character in the string to a result string.

#4 - getMiddleSentence(s) - 10pts

Write the function getMiddleSentence(s) that takes a string s, checks whether it has

exactly three sentences, and if it does, returns the middle sentence. We define a

sentence to be a consecutive string of one or more non-whitespace characters that
ends in one of the following characters: . 1 ?

For example, given the following string:
"You've got to ask yourself a question. Do I feel lucky? Well, do ya, punk!"

The function should return "Do I feel lucky". Note that we remove the punctuation
at the end of the returned sentence for simplicity.

If the inputted string does not have exactly three sentences, you should instead return
"Improper structure". Note that the test cases are guaranteed to not use ., !, or ?

inside a sentence and each sentence will only end in one punctuation mark.

To solve this problem, you should use string operations and methods. Specifically:
e s.replace() can help turn multiple punctuation types into one
e s.count() can detect if there are exactly three sentences or not
e s.find() and slicing can help find the beginning and end of the middle sentence

#5 - sumAnglesAsDegrees - 10pts

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to change each angle from radians to degrees before adding it to the sum.
You can do this with the library function math.degrees (). Make sure to round the final
result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.90, 45.0, and 180.0, then return 255.

#6 - onlyPositive(1lst) - 10pts

Write a function onlyPositive(1lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3], [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive([[o, 1, 2], [-2, -1, @], [1o0, 9, -9]]returns[1, 2, 10, 9],
and onlyPositive([[-4, -3], [-2, -1]]) returns [].

	x valueRow1:
	y valueRow1:
	z valueRow1:
	output valueRow1:
	x valueRow2:
	y valueRow2:
	z valueRow2:
	output valueRow2:
	x valueRow3:
	y valueRow3:
	z valueRow3:
	output valueRow3:
	x valueRow4:
	y valueRow4:
	z valueRow4:
	output valueRow4:
	x valueRow5:
	y valueRow5:
	z valueRow5:
	output valueRow5:
	x valueRow6:
	y valueRow6:
	z valueRow6:
	output valueRow6:
	x valueRow7:
	y valueRow7:
	z valueRow7:
	output valueRow7:
	x valueRow8:
	y valueRow8:
	z valueRow8:
	output valueRow8:
	x valueRow9:
	y valueRow9:
	z valueRow9:
	output valueRow9:
	x valueRow10:
	y valueRow10:
	z valueRow10:
	output valueRow10:
	1A:
	x 10A:
	x x 1A:
	1B:
	x 10B:
	x x 1B:
	1C:
	x 10C:
	x x 1C:
	Values17 s26:
	Values11 s2lens21:
	Values148:
	Values22lens22:
	Values14:
	Text1:
	Text2:
	Button3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Text14:
	Text15:
	Text16:
	Text17:
	Text18:
	Text19:
	Text20:
	Text21:
	Text22:
	Text23:
	Text24:
	Text25:
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:
	Text33:
	Text34:
	Text35:
	Text36:
	Text37:
	Text38:
	Text39:
	Text40:
	Text41:
	Text42:
	Text43:
	Text44:
	Text45:
	Text46:
	Text47:
	Text48:
	Text49:
	Text50:
	Text51:
	Text52:
	Text53:
	Text54:
	Text55:
	Text56:
	Text57:
	Text58:
	Text59:
	Text60:
	Text61:
	Text62:
	Text63:
	Text64:

