15-110 Hw2 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Hw2 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - printTriangle(n) - 10pts

Write a function printTriangle(n) which prints an ascii art triangle out of asterisks
based on the integer n. For example, printTriangle(5) would print the following:

*
*%
k%
*%

*

Note that the triangle is five lines long, with the top and bottom line each having only
one asterisk, the second and second-from bottom lines each having two asterisks, etc.
So printTriangle(9) would look like:

*

*%
*k*k
*kkk
*kkkk

*kkk

You'll want to create a loop where each iteration prints a single line of the triangle. To
draw multiple stars on a single line, consider using a nested loop or the * operator.

Note: n is guaranteed to be positive and odd.
Hint: how can the program switch from increasing numbers of stars to decreasing?

Consider using a conditional to check when you hit the midpoint, or two separate loops
(one going up, one going down).

#2 - printPrimeFactors(x) - 10pts

Write the function printPrimeFactors(x) which takes a positive integer x and prints
all of its prime factors in a nice format.

A prime factor is a number that is both prime and evenly divides the original number
(with no remainder). So the prime factors of 70 are 2, 5, and 7, because 2 *5* 7 = 70.
Note that 10 is not a prime factor because it is not prime, and 3 is not a prime factor
because it is not a factor of 70.

Prime factors can be repeated when the same factor divides the original number
multiple times; for example, the prime factors of 12 are 2, 2, and 3, because 2 and 3 are
both prime and 2 * 2 * 3 = 12. The prime factors of 16 are 2, 2, 2, and 2, because 2 * 2 *
2* 2 =16. We'll display repeated factors on a single line as a power expression; for
example, 16 would display 2 ** 4, because 2 is repeated four times.

Here's a high-level algorithm to solve this problem. To find factors manually, iterate
through all possible factors. When you find a viable factor, repeatedly divide the
number by that factor until it no longer evenly divides the number. Our algorithm looks
something like this:

1. Repeat the following procedure over all possible factors (2 to x)
a. If x is evenly divisible by the possible factor
i. Setanumber countto be 0
i. Repeat the following procedure until x is not divisible by the
possible factor

1. Set count to be count plus 1
2. Set x to x divided by the factor

iii. If the number count is exactly 1
1. Print the factor by itself

iv. If the number count is greater than 1
1. Print"f ** c", where f is the factor and c is the count

As an example, if you call printPrimeFactors(600), it should print
2**3

3
5% 2

#3 - getSecretMessage(s, key) - 10pts

You can hide a secret message in a piece of text by setting a specific character as a
key. Place the key before every letter in the message, then fill in extra (non-key) letters
between key-letter pairs to hide the message in noise.

For example, to hide the message "computer" with the key "q", you would start with
"computer”, turn it into "qgecqogmqgpqugqtgeqr”, and then add extra letters as noise,

perhaps resulting in "orupqcrzypqomgmhcyqgpwhhqutqtxtgeyeqrpa”. To get the
original message back out, copy every letter that occurs directly after the key, ignoring
the rest.

Write a function getSecretMessage(s, key) that takes a piece of text holding a secret
message and the key to that message and returns the secret message itself. For

example, if we called the function on the long string above and "q", it would return
"computer”. You are guaranteed that the key does not occur in the secret message.

Hint: loop over every character in the string. If the character you're on is the key, add
the next character in the string to a result string.

#4 - getMiddleSentence(s) - 10pts

Write the function getMiddleSentence(s) that takes a string s, checks whether it has

exactly three sentences, and if it does, returns the middle sentence. We define a

sentence to be a consecutive string of one or more non-whitespace characters that
ends in one of the following characters: . 1 ?

For example, given the following string:
"You've got to ask yourself a question. Do I feel lucky? Well, do ya, punk!"

The function should return "Do I feel lucky". Note that we remove the punctuation
at the end of the returned sentence for simplicity.

If the inputted string does not have exactly three sentences, you should instead return
"Improper structure". Note that the test cases are guaranteed to not use ., !, or ?

inside a sentence and each sentence will only end in one punctuation mark.

To solve this problem, you should use string operations and methods. Specifically:
e s.replace() can help turn multiple punctuation types into one
e s.count() can detect if there are exactly three sentences or not
e s.find() and slicing can help find the beginning and end of the middle sentence

#5 - sumAnglesAsDegrees - 10pts

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to change each angle from radians to degrees before adding it to the sum.
You can do this with the library function math.degrees (). Make sure to round the final
result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.90, 45.0, and 180.0, then return 255.

#6 - onlyPositive(1lst) - 10pts

Write a function onlyPositive(1lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3], [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive([[o, 1, 2], [-2, -1, @], [1o0, 9, -9]]returns[1, 2, 10, 9],
and onlyPositive([[-4, -3], [-2, -1]]) returns [].

