
15-110 Check4 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Check4 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - getLeftmost(t) - 15pts

Write the function getLeftmost(t) that takes a binary tree in our dictionary format and
returns the contents of the leftmost child of that tree. This is the child we reach if we
keep moving down and left from the root node until we cannot go left any further. For
example, in the tree:

Which is represented as the dictionary:

t = { "contents" : "A",

"left" : { "contents" : "B",

"left" : { "contents" : "D", "left" : None, "right" : None},

"right" : None },

"right" : { "contents" : "C",

"left" : { "contents" : "E",

"left" : { "contents" : "G", "left" : None, "right" : None },

"right" : { "contents" : "H", "left" : None, "right" : None } },

"right" : { "contents" : "F", "left" : None, "right" : None } } }

We go from A to B, then from B to D, then we can't go left any further. "D" is the
contents of the leftmost node and is returned when we call the function on t.

Hint: you can solve this using recursion, or you can just use a while loop.

#2 - getInitialTeams(bracket) - 25pts

We can represent a tournament bracket from a sports competition as a binary tree. To
do this, store the winning team as the root node. Its children are the winning team
again, as well as the second-place team. In general, every node represents the winner
of a match, and its two children are the two teams that competed in that match.

For example, the following bracket represents the last two rounds of the Women's World
Cup in 2019.

In our binary tree dictionary format, this would look like:

t1 = { "contents" : "United States",

"left" : { "contents" : "United States",

"left" : { "contents" : "England", "left" : None, "right" : None },

"right" : { "contents" : "United States", "left" : None, "right" : None}},

"right" : { "contents" : "Netherlands",

"left" : { "contents" : "Netherlands", "left" : None, "right" : None },

"right" : { "contents" : "Sweden", "left" : None, "right" : None } }

}

Write the function getInitialTeams(bracket) which takes a tournament bracket and
returns a list of all the teams that participated in that tournament. For example, if the
function is called on the tree above it might return ["England", "United States",

"Netherlands", "Sweden"]. You will need to implement this function recursively to
access all the nodes. We recommend that you start by looking at the sumNodes and
listValues examples from the slides.

Hint 1: how can we get all of the teams to show up in the list exactly once? Every team
occurs at the very beginning of the tournament, in the first set of matches. In the tree,
this is represented by the leaves, so you should not include values on non-leaf nodes.

Hint 2: make sure the type you return is the same in both base and recursive cases!

#3 - largestEdge(g) - 15pts

We often want to find the largest edge weight in a graph. This can help us identify
useful information, like the most congested street in a city or the two gas stops that are
farthest apart on a highway. Write the function largestEdge(g) that takes a weighted
graph in our dictionary format and returns a list holding two elements - the two
endpoints of the edge with the largest weight in the graph. For example, in the graph:

Which is represented as the dictionary:

g = { "A" : [["B", 10], ["C", 2], ["F", 25]],

"B" : [["A", 10], ["D", 42]],

"C" : [["A", 2], ["E", 30]],

"D" : [["B", 42]],

"E" : [["C", 30], ["F", 9]],

"F" : [["A", 25], ["E", 9]],

"G" : [] }

The largest edge has the weight 42. That edge is between the nodes B and D, so if we
call the function on that graph, it will return ["B", "D"] (or ["D", "B"] - the order
doesn't matter).

To find the largest edge, modify the find-most-common/find-largest-item pattern we've
discussed several times in class. Iterate over each of the nodes in the graph, then for
each node iterate over each of that node's neighbors to visit each edge.

Note: to make this easier, you are guaranteed that all edge weights will be positive and
there will be at least one edge in the graph.

