
15-110 Check3 - Written Portion 
 
Name:  
 
AndrewID: 

 
 

#1 - Aliasing and Mutability - 20pts 
 

The following code creates and modifies lists. Determine each list’s values after the 
code has run. 
 

 
 

 

Select all of the pairs of lists that are ​aliased ​at the end of the code. 
 

☐ a ​ and ​b 
☐ a ​ and ​c 
☐ a ​ and ​d 
☐ b ​ and ​c 
☐ b ​ and ​d 
☐ c ​ and ​d 
☐ None of the lists are aliased 

Variable List Values 

a 
 
 

b 
 
 

c 
 
 

d 
 
 



#2 - Base Cases and Recursive Cases - 16pts 
 
Assume you want to write a function ​recursiveSum ​ that takes a positive integer, ​n​, and 
recursively ​ computes the sum from one to ​n​. 
 
For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15. 
 
 
What condition do you need to check for your ​base case ​? 

 
What do you return in the ​base case​? 

 
What is the recursive call on a smaller problem in the ​recursive case​? 

 
How do you use the recursive call's result to solve the whole problem for ​n​ in the 
recursive case​? 

 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 



#3 - Tracing Towers of Hanoi - 10pts 
 
Recall the algorithm we discussed in class to solve the Towers of Hanoi problem. Use 
that algorithm to fill out all the steps needed to move three discs from Peg A to Peg C in 
the table below. You might not need to use all the rows. 
 
The three discs are called 1, 2, 3 (where 1 is the smallest and the disc on top). So the 
algorithm starts with the discs 1, 2, 3 on Peg A, and should end with 1, 2, 3 on Peg C. 
We've done the first step for you. 
 

 
How many steps would it take to move 4 discs instead of 3? 
 

 
 

 Peg A Peg B Peg C 

Start 1, 2, 3   

Step 1 2, 3  1 

Step 2    

Step 3    

Step 4    

Step 5    

Step 6    

Step 7    

Step 8    

Step 9    

Step 10    

Step 11    

 
 
 



#4 - Binary Search - 14pts 

In the following table, write out the recursive calls that our implementation of binarySearch ​ 

from lecture would make while searching the given list for the given item. Make sure to write 
out the ​function call​, not the result. You might not need to use all the rows. 

Q1: Search for 5

Q2: Search for 14

Original Call binarySearch ​([​3, 5, 6, 7, 9, 11, 11, 15, 15, 19 ​]​, 5 ​) 

Recursive Call 1 

Recursive Call 2 

Recursive Call 3 

Recursive Call 4 

Recursive Call 5 

Original Call binarySearch ​([​3, 5, 6, 7, 9, 11, 11, 15, 15, 19 ​]​, 14 ​) 

Recursive Call 1 

Recursive Call 2 

Recursive Call 3 

Recursive Call 4 

Recursive Call 5 



15-110 Check3 - Programming Portion 
 
Each of these problems should be solved in the starter file available on the course 
website. Submit your code to the Gradescope assignment Check3 - Programming for 
autograding. 
 
All programming problems may also be checked by running the starter file, which calls 
the function ​testAll​()​ to run test cases on all programs. 
 
 
#1 - ​onlyOdds(lst)​ - 10pts 
 
Write a ​non-destructive ​function ​onlyOdds​( ​lst ​)​ that takes a list of integers and 
returns a ​new ​list containing only the odd elements of ​lst ​. Note that this should not 
return the odd indexes- it should return the odd ​elements​! 
 
For example, ​onlyOdds​([ ​1, 2, 3, 4, 5, 6​])​ returns ​[ ​1, 3, 5​] ​, and 
onlyOdds​([ ​4, 1, 70, 35, -9​])​ returns ​[​1, 35, -9 ​] 
 
 
#2 - ​removeEvens(lst)​ - 10pts 
 
Write a ​destructive ​function ​removeEvens​(​lst ​)​ that takes a list of integers and 
destructively removes the even elements of the provided list so that it contains only the 
original odd elements at the end of the function. This function should return ​None 
instead of the list; we'll test it by checking whether the input list was modified properly. 
  
For example, ​removeEvens​([ ​1, 2, 3, 4, 5, 6​])​ modifies the list to be ​[ ​1, 3, 5​] ​, 
while ​removeEvens ​([​4, 1, 70, 35, -9​])​ modifies the list to be ​[ ​1, 35, -9 ​]​. 
 
Hint ​: this is tricky because ​lst ​ will change as the function runs. You should use an 
appropriate loop to account for this - see the course slides! Also, make sure to check for 
aliasing issues. 
 
 
 
 
 



#3 - ​recursiveReverse(lst)​ - 10pts  
 
Write a function ​recursiveReverse ​(​lst ​)​ that takes a list as input and returns a ​new 
list which has the same elements, but in reverse order. This function must use 
recursion ​in a meaningful way; a solution that uses a loop, built-in reverse functions, or 
a slice with a negative step will receive no points. 
 
For example, ​recursiveReverse​([ ​1, 2, 3​]) ​ should return ​[ ​3, 2, 1​] ​. 
 
 
#4 - ​recursiveCount(lst, item)​ - 10pts  
 
Write a function ​recursiveCount ​(​lst, item ​)​ that takes a list and a value as input 
and returns a count of the number of times that item occurs in the list. This function 
must use ​recursion ​in a meaningful way; a solution that uses a loop or built-in count 
functions will receive no points. 
 
For example, ​recursiveCount ​([​2, 4, 6, 8, 10​] ​, 6 ​)​ returns ​1​, 
recursiveCount​([ ​4, 4, 8, 4 ​]​, 4 ​)​ returns ​3​, and  
recursiveCount​([ ​1, 2, 3, 4 ​]​, 5 ​)​ returns ​0​. 


	List Valuesa: 
	List Valuesb: 
	List Valuesc: 
	List Valuesd: 
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case: 
	What do you return in the base case: 
	What is the recursive call on a smaller problem in the recursive case: 
	recursive case: 
	2 3Step 2: 
	Peg BStep 2: 
	1Step 2: 
	2 3Step 3: 
	Peg BStep 3: 
	1Step 3: 
	2 3Step 4: 
	Peg BStep 4: 
	1Step 4: 
	2 3Step 5: 
	Peg BStep 5: 
	1Step 5: 
	2 3Step 6: 
	Peg BStep 6: 
	1Step 6: 
	2 3Step 7: 
	Peg BStep 7: 
	1Step 7: 
	2 3Step 8: 
	Peg BStep 8: 
	1Step 8: 
	2 3Step 9: 
	Peg BStep 9: 
	1Step 9: 
	2 3Step 10: 
	Peg BStep 10: 
	1Step 10: 
	2 3Step 11: 
	Peg BStep 11: 
	1Step 11: 
	How many steps would it take to move 4 discs instead of 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 5: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 5: 
	Text1: 
	Text2: 


