15-110 Check3 - Written Portion

Name:

AndrewlD:

#1 - Aliasing and Mutability - 20pts

The following code creates and modifies lists. Determine each list’s values after the
code has run.

"apple”, "banana", “carrot"”, "donut" ]

oo n ooo
1]

.t 2, ”fig”)

Variable List Values

Select all of the pairs of lists that are aliased at the end of the code.

aandb
aandc
aandd
band c
bandd
candd
None of the lists are aliased

gogdgogood



#2 - Base Cases and Recursive Cases - 16pts

Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

How do you use the recursive call's result to solve the whole problem for n in the
recursive case?




#3 - Tracing Towers of Hanoi - 10pts

Recall the algorithm we discussed in class to solve the Towers of Hanoi problem. Use
that algorithm to fill out all the steps needed to move three discs from Peg A to Peg C in
the table below. You might not need to use all the rows.

The three discs are called 1, 2, 3 (where 1 is the smallest and the disc on top). So the
algorithm starts with the discs 1, 2, 3 on Peg A, and should end with 1, 2, 3 on Peg C.
We've done the first step for you.

Peg A Peg B Peg C

Start 1,2,3

Step 1 2,3 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

How many steps would it take to move 4 discs instead of 37




#4 - Binary Search - 14pts

In the following table, write out the recursive calls that our implementation of binarySearch

from lecture would make while searching the given list for the given item. Make sure to write
out the function call, not the result. You might not need to use all the rows.

Q1: Search for 5
Original Call binarySearch([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 5)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5

Q2: Search for 14

Original Call binarySearch([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 14)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5




15-110 Check3 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Check3 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - onlyOdds (1st) - 10pts

Write a non-destructive function onlyOdds(1st) that takes a list of integers and
returns a new list containing only the odd elements of 1st. Note that this should not
return the odd indexes- it should return the odd elements!

For example, onlyOodds([1, 2, 3, 4, 5, 6]) returns [1, 3, 5], and
onlyOdds([4, 1, 70, 35, -9]) returns [1, 35, -9]

#2 - removeEvens(1lst) - 10pts

Write a destructive function removeEvens(1st) that takes a list of integers and
destructively removes the even elements of the provided list so that it contains only the
original odd elements at the end of the function. This function should return None
instead of the list; we'll test it by checking whether the input list was modified properly.

For example, removeEvens([1, 2, 3, 4, 5, 6]) modifies the listto be [1, 3, 5],
while removeEvens([4, 1, 70, 35, -9]) modifies the listto be [1, 35, -9].

Hint: this is tricky because 1st will change as the function runs. You should use an
appropriate loop to account for this - see the course slides! Also, make sure to check for
aliasing issues.



#3 - recursiveReverse(lst) - 10pts

Write a function recursiveReverse(1lst) that takes a list as input and returns a new
list which has the same elements, but in reverse order. This function must use
recursion in a meaningful way; a solution that uses a loop, built-in reverse functions, or
a slice with a negative step will receive no points.

For example, recursiveReverse([1, 2, 3]) should return [3, 2, 1].

#4 - recursiveCount(1lst, item) - 10pts

Write a function recursiveCount(1lst, item) thattakes a list and a value as input
and returns a count of the number of times that item occurs in the list. This function
must use recursion in a meaningful way; a solution that uses a loop or built-in count
functions will receive no points.

For example, recursiveCount([2, 4, 6, 8, 10], 6) returns 1,
recursiveCount([4, 4, 8, 4], 4) returns 3, and
recursiveCount([1, 2, 3, 4], 5) returns@.



	List Valuesa: 
	List Valuesb: 
	List Valuesc: 
	List Valuesd: 
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case: 
	What do you return in the base case: 
	What is the recursive call on a smaller problem in the recursive case: 
	recursive case: 
	2 3Step 2: 
	Peg BStep 2: 
	1Step 2: 
	2 3Step 3: 
	Peg BStep 3: 
	1Step 3: 
	2 3Step 4: 
	Peg BStep 4: 
	1Step 4: 
	2 3Step 5: 
	Peg BStep 5: 
	1Step 5: 
	2 3Step 6: 
	Peg BStep 6: 
	1Step 6: 
	2 3Step 7: 
	Peg BStep 7: 
	1Step 7: 
	2 3Step 8: 
	Peg BStep 8: 
	1Step 8: 
	2 3Step 9: 
	Peg BStep 9: 
	1Step 9: 
	2 3Step 10: 
	Peg BStep 10: 
	1Step 10: 
	2 3Step 11: 
	Peg BStep 11: 
	1Step 11: 
	How many steps would it take to move 4 discs instead of 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 5: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 5: 
	Text1: 
	Text2: 


