15-110 Check2 - Written Portion

Name:

AndrewlD:

#1 - Circuit to Truth Table and Expression - 24pts

Fill out the truth table below to show all possible input combinations and all resulting
outputs for the circuit shown here. You may not need to use all the rows.

x value

y value

z value

output value




Write a Boolean expression which is equivalent to the circuit above in the box below.
Note: it's fine to use normal Boolean terms (and/or/not/xor) instead of circuit operators.

#2 - Full Adder Facts - 9pts

In class and in the lecture slides, we showed how to put together a Full Adder circuit.
For each of the following questions, choose the best answer as relates to that circuit.

What are X and Y?
[] The two whole numbers being added
1 Single binary digits of the two numbers being added
[] Two binary digits of the first number being added

What is C,,?
[] The third whole number being added
[] A single binary digit of the third number being added
[] The number carried in from the previous addition
[] The remainder of the current addition

Why do we need two output values?
[] To manage the large number of gates
[] To account for both of the inputs
[] To hold both the result and the original number
[] To hold both the result and the number that will be carried over



#3 - Code Tracing While Loops - 18pts

Given the following block of code, fill out a variable table that shows the values of the
variables at the end of each iteration of the loop. You may not need to fill out values for
every listed iteration.

y = 10

x value y value z value

Pre-loop 0 10 0

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8




#4 - Code Tracing with For Loops - 9pts

For each of the following range expressions, list all the values the loop variable will be
set to over the course of the range. For example, range(1, 5) produces 1, 2, 3, 4.

Range Expression Numbers Produced

range(3)

range(4, 8)

range(1, 10, 3)




15-110 Check2 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Check2 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

Note: Check2 & Hw2 are the first assignments where you will need to do a substantial
amount of coding. We encourage everyone to make good use of Piazza, office hours,
and small group sessions to get help.

In particular, if you attend a small group session in Week 3 after Wednesday, your TA

will include Problem #2 (drawIllusion) as one of the practice problems and will
provide more help in solving the problem than is usually available at office hours.

#1 - Flow Chart to Program - 10pts

Given the control flow chart below, write a function mysteryFunction(a, b, c) that
implements the control flow chart correctly.

param a, b, c

return d




#2 - drawIllusion(canvas) - 20pts

Write the function drawIllusion(canvas) which takes a Tkinter canvas and draws the
illusion shown below. You must use a loop to do this; don't hardcode a large number of
rectangles.

Hint: it's easiest to make this illusion by drawing overlapping squares. Start with the
largest black square, then draw the next-largest white square, etc. You'll need to draw
10 squares total. The canvas is 400px wide, so each square should be 20 pixels smaller
on each side than the previous one (with the last square being exactly 40 pixels wide).

Another Hint: start by considering what the loop control variable should be. Which
values need to change as you move to the next square? How do those values relate to
the loop control variable? Consider our approach to drawing a grid in lecture as well.

#3 - factorial(x) - 10pts

Write the function factorial(x) which takes a non-negative integer, x, and returns x!.
Recall that x! = x*(x-1)*(x-2)*...*3*2*1. You may not use the built-in function
math.factorial(); that would make this too easy. Instead, you must use a for loop to
solve this problem.

Hint: consider the sum-1-to-10 problem we went over in lecture. You can use a very
similar approach to solve this problem.



	x valueRow1: 
	y valueRow1: 
	z valueRow1: 
	output valueRow1: 
	x valueRow2: 
	y valueRow2: 
	z valueRow2: 
	output valueRow2: 
	x valueRow3: 
	y valueRow3: 
	z valueRow3: 
	output valueRow3: 
	x valueRow4: 
	y valueRow4: 
	z valueRow4: 
	output valueRow4: 
	x valueRow5: 
	y valueRow5: 
	z valueRow5: 
	output valueRow5: 
	x valueRow6: 
	y valueRow6: 
	z valueRow6: 
	output valueRow6: 
	x valueRow7: 
	y valueRow7: 
	z valueRow7: 
	output valueRow7: 
	x valueRow8: 
	y valueRow8: 
	z valueRow8: 
	output valueRow8: 
	x valueRow9: 
	y valueRow9: 
	z valueRow9: 
	output valueRow9: 
	x valueRow10: 
	y valueRow10: 
	z valueRow10: 
	output valueRow10: 
	Note its fine to use normal Boolean terms andornotxor instead of circuit operators: 
	The two whole numbers being added: Off
	Single binary digits of the two numbers being added: Off
	Two binary digits of the first number being added: Off
	The third whole number being added: Off
	A single binary digit of the third number being added: Off
	The number carried in from the previous addition: Off
	The remainder of the current addition: Off
	To manage the large number of gates: Off
	To account for both of the inputs: Off
	To hold both the result and the original number: Off
	To hold both the result and the number that will be carried over: Off
	0Iter 1: 
	10Iter 1: 
	0Iter 1_2: 
	0Iter 2: 
	10Iter 2: 
	0Iter 2_2: 
	0Iter 3: 
	10Iter 3: 
	0Iter 3_2: 
	0Iter 4: 
	10Iter 4: 
	0Iter 4_2: 
	0Iter 5: 
	10Iter 5: 
	0Iter 5_2: 
	0Iter 6: 
	10Iter 6: 
	0Iter 6_2: 
	0Iter 7: 
	10Iter 7: 
	0Iter 7_2: 
	0Iter 8: 
	10Iter 8: 
	0Iter 8_2: 
	Numbers Producedrange3: 
	Numbers Producedrange4 8: 
	Numbers Producedrange1 10 3: 
	Text1: 
	Text2: 


