

Key: SA = short answer, CR = code reading, FR = free response, CW = code writing

Note 1: any topic listed at CW or FR rank may be tested at all ranks.
Note 2: any topic listed at the CR rank may also be tested at the SA rank.

Algorithms and Abstraction (SA, FR)
1. Give a high level algorithm for printing out a list in sorted order.

ANS: Find the smallest item of the list and print it. Then discard it from the list.
 Continue until the list is empty.

2. Give a high level algorithm for returning the sum of every other element in a list.
ANS: Print one item of list and discard it, only discard the next, and keep going
 until the list is empty.

Programming Basics (CW)
1. Write a Python program that prints an item and its corresponding type.

ANS: def fn(item):
 print(item)

 if type(item)==str:

 print(‘str’)

 elif type(item)==int:

 print(‘int’)

 elif type(item)==bool:

 print(‘bool’)

2. Output the results of the following statements:
a. float(int(32.58)) ANS: 32.0
b. type(7//2) ANS: int
c. type(“01151”) ANS: string

How Python Works (CR)
1. What is the job of the interpreter?

ANS: The job of the interpreter is to translate your python code into bytecode,
 which the computer can then run.

2. What type of error is each of the following?

a. x = 5

x = x + y
ANS: Name Error: used a missing variable (runtime error)

b. if x = 2:
 print (“Hello”)
ANS: Syntax error (x==2)

c. x = 0

x = x + “no”

ANS: Type error (adding string to a number)

Functions (FR, CW, SA)
1. If we have the the following function:

def summation(a,b):

print(a+b)

c = summation(2,4)

What will c be equal to after we call this function? If there is an error, fix and explain it.

ANS: C will be equal to None since summation returns None. We have to change the
print to return a + b since printing wont return a value.

2. What does the following function returns?
def f(x):

 x + 42

print(f(5))

ANS: None

Data Representation (SA, FR)
1. If we only had 5 bits to use, what is the minimum and maximum number we can

represent using 5 bits?
ANS: Minimum: 0, Maximum: 31

2. Convert the following decimal numbers into their binary representation using only 4 bits.
If there aren’t enough bits then only represent the lower 4 bits: 0, 17, 23, 5, 8, 2.

ANS:
0: 0000

17: 0001

23: 0111

5: 0101

8: 1000

2: 0010

3. Explain the difference in the simple approach and actual approach in the binary
representation of negative numbers.
ANS: Simple Approach: reserve one bit to represent whether the number is positive
 or negative. Convert the rest normally. Actual Approach: use a bit to represent
 whether it's positive or negative, but flip the rest of the bits, to avoid
 double-representing zero.

Booleans and Conditionals (CW)
1. def f(x, y, z):

result = “”

if (x + y) % 2 == 0:

result += str(x)

if (y + z) % 2 == 1:

result = str(y) + result

if z % 4 == 3:

result = “”

return result

print(f(1, -7, 526), f(8, 43, 2), f(9, 101, 11))

ANS: -71 43

2. Write a function to determine whether somebody should eat ice cream on a hot day
based on temp (must be greater than 60 degrees) and hunger (must be greater than 0.5)
ANS: def iceCream(temp, hunger):

 if temp > 60:

 if hunger > 0.5:

 return True

 return False

3. What is the difference between the “and” vs. “or” operations in terms of their relationship
with the boolean True?
ANS: “and” evaluates to True only when both values are True, while “or” evaluates
 to True when either value is True

Circuits and Gates (FR, SA)
1. How does a half adder work? How does a full adder work? What are the differences?

ANS: A half adder takes in two 1-bit inputs and adds them to give two outputs: sum and
 carry out. A full adder takes in 3 1-bit inputs, a, b, carry-in and also has 2 outputs:
 sum and carry out. A full adder can be chained together to make a multi-bit adder
 since it has a carry in and carry out.

2. What boolean operation does the following logic circuit behave like?

ANS: AND

3. What is the purpose of C_in and C_out in a full adder?
ANS: To carry an additional value while working with multi digit numbers

While Loops (CW, FR)
1. Write the function createTriangle(n) to recreate the following pattern with a

while loop given n number of rows.

print(createTriangle(3))

*

**

*

ANS:
def createTriangle(n):

half = n//2 + 1

i = 0

while i < half:

s1 = "*" * (i+1)

print(s1)

i += 1

#now i = half, reduce by 1

i -= 1

while i > 0:

s2 = "*" * (i)

print(s2)

i -= 1

2. Write the while loop that corresponds with this flow chart.

ANS:
i = 100

while i % 2 == 0:

 print(i)
 i /= 2
print(“Odd number!”)

3. Use while loop to write function hasConsecutiveDigits(n) that takes in a
possibly-negative int value n and returns True if that number contains two consecutive
digits that are the same, False otherwise.
ANS:
def hasConsecutiveDigits(n):

 n = abs(n)

 prevDigit = -1

 while (n>0):

 onesDigit = n%10

 n//=10

 if (prevDigit == onesDigit):

 return True

 prevDigit = onesDigit

 return False

4. Write the function isPowerFour(n) that takes in a number n and returns True if n is a
power of 4, returns False otherwise.
ANS: def isPowerFour(n):

 x = -1

 while ((4**x) <= n):

 x += 1

 if (4**x == n):

 return True

 return False

Testing and Debugging (FR, CR, SA)
1. List 5 categories of test cases, and give an example for each

ANS: Normal Case: assert(digitCount(1234) == 4)
 Edge Case: assert(digitCount(7) == 1)
 Special Case: assert(digitCount(0) == 1)
 Varying Result: assert(digitCount(20) == 2)
 Large Input Case: assert(digitCount(54365463734365) == 14)

2. Indicate if there’s anything wrong with the following statements/functions:

a) Kevin wrote a function that takes in a number n and returns the number of
multiples of 3 up to that number.
def f(n):

 count = 0

 number = 1

 while (number < n):

 if (number % 3 == 0):

 count = count -1

 return count
ANS: This function is not correct. Right now we have an infinite loop that won’t
break. To fix it, we need to change “count = count - 1” to “count = count + 1”. We
also need to increment number in the loop (outside the if statement) so that there
is no infinite loop and so that the statement number < n will eventually be false.

b) Zack wrote this function called same(s) trying to count the number of pairs of

the same character inside a string. (for example: same(“dad”) returns 1)

def same(s):

 counter = 0

 for i in range (len(s)-1):

 for j in range (1, len(s)):

 if (s[i] == s[j]):

 counter = counter + 1

 return counter

ANS: This function is not correctly implemented. The range of the second loop is
 wrong. Instead of searching from index 1, it should start at index i+1 so that
 the same character won’t be checked multiple times.

For Loops (CW, FR)
1. Explain when you might use a for-range loop and when you might use a for-each loop.

ANS: I would use a for-range loop when I want to repeat actions for a specified number
 of times. I would use a for-each loop when I want to loop over iterable objects.

2. Similarly, when would you use a while loop versus a for loop? Can you always convert a
for loop to a while loop? Can you always convert a while loop to a for loop?
ANS: You usually use a while loop when you don’t know how many iterations are going
 to occur. You can always convert a for loop into a while loop but not the other way
 around for the reason stated earlier.

3. Write a function numberOfFactors(n) which takes in a natural number (not including
0) and returns the number of factors it has.
ANS:
def numberOfFactors(n):

 counter = 0

 for i in range(1,n+1):

 if (n%i == 0):

 counter += 1

 return counter

4. Using a for loop, write the function fizzBuzz(n) that prints every number from 0 to n-1
inclusive. If the number is divisible by 3, print “fizz” instead of the number. If the number
is divisible by 5, print “Buzz” instead of the number. If divisible by both 3 and 5, print
“fizzBuzz” instead of the number.

ANS: def fizzBuzz(n):

 for i in range(n):

 if (i % 3 == 0 and i % 5 == 0):

 print(“fizzBuzz”)

 elif (i % 3 == 0):

 print(“fizz”)

 elif (i % 5 == 0):

 print(“Buzz”)

 else:

 print(i)

5. Using a for loop, write the function sumAllEven(n) that finds the sum of all even
numbers less than or equal to n.
ANS: def sumAllEven(n):
 sum = 0

 for i in range(n+1):

 if i % 2 == 0:

 sum += i

 return sum

Strings (CW, CR)
1. Write a function reverseString(s) that returns the string s reversed.

ANS: def reverseString(s):
 return s[::-1]

 def reverseString(s):

 reversed = “”

 for c in s:

 reversed = c + reversed

 return reversed

2. What would the following code print?
def mystery(s, n):

for word in s.split(“ “):

if len(word) == n:

return word

return “Darn!”

print(“She sells seashells down by the seashore”, 4)

ANS: “down”

