
Managing Large Code Projects
15-110 – Friday 11/01

Announcements

• Check5 due on Monday
• Can do most of Hw5's written component after today's lecture too!

• Exam2 on Wednesday
• TA Review Session:

• Lists/Aliasing/Recursion is Saturday 11/02 at 2pm in TBD
• Big-O/Dictionaries/Trees/Graphs is Sunday 11/03 at 4pm in TBD

2

Midsemester Feedback

• Average time students spend on course is 10 hours or less
• Almost all students like in-class demonstrations and activities
• Most students struggling with recursion, not it will be in exam

review!

3

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

7

Helper Functions

8

You will often need to write many functions that work together
to solve a larger problem.

Recall we can call functions within other functions.

We call a function that solves a subpart of a larger problem a
helper function.

By breaking up a large problem into multiple smaller problems and
solving those problems with helper functions, we can make
complicated tasks more approachable.

10

To design helper functions, we need to identify subtasks.

In Hw5 and Hw6 we've broken a problem down into helper
functions for you. But if you work on a separate project, you'll need
to do this process on your own.

Try to identify subtasks that are repeated or are separate from the
main goal; break down the problem into smaller parts. Have one
subtask per function to keep things simple.

12

Example: Tic-Tac-Toe

Consider the game tic-tac-toe. It seems simple, but it involves
multiple parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

13

Let's organize our tic-tac-toe game based on four core
subtasks:

makeNewBoard(): construct and return the starter board (a 2D list of strings)

showBoard(board): display a given board

takeTurn(board, player): let the given player ("X" or "O") make a move on
the board, return the updated board

isGameOver(board): return True or False based on whether or not the game
is over

We'll only go over how to implement each function briefly. The most important
thing right now is how we use the helper functions in the main code.

15

We'll start by assuming the helper functions already work.

Write a function call playGame that calls each
helper function in the appropriate place.
1. Call makeNewBoard to generate the

board.
2. Display the starting state by calling

showBoard.
3. Use a loop to iterate over every turn in

the game.
a. Alternate a Boolean variable to

decide whether it's X's or O's turn,
and call takeTurn on the board and
the appropriate player to decide
which move to make.

b. Call showBoard again each time to
show the updated board.

c. Keep looping until the game is over
by checking isGameOver in the loop
condition.

def playGame():

 print("Let's play tic-tac-toe!")

 board = makeNewBoard()

 showBoard(board)

 player1Turn = True

 while not isGameOver(board):

 if player1Turn:

 board = takeTurn(board, "X")

 else:

 board = takeTurn(board, "O")

 showBoard(board)

 player1Turn = not player1Turn

 print("Goodbye!")

16

makeNewBoard and showBoard

makeNewBoard and showBoard are simple;
we can program these just using concepts
we've already learned.

The board will be a 3x3 2D list with "." for
empty spaces, "X" for player X, and "O" for
player O.

Note that makeNewBoard takes no
parameters and returns a board, whereas
showBoard takes the board and returns None.
They match how we used them before!

Construct the tic-tac-toe board
def makeNewBoard():
 board = []
 for row in range(3):
 # Add a new row to board
 board.append([".", ".", "."])
 return board

Print the board as a 3x3 grid
def showBoard(board):
 for row in range(3):
 line = ""
 for col in range(3):
 line += board[row][col]
 print(line)

18

takeTurn

takeTurn has the user input the
row and col they want to fill in
using our old friend input. This
is also similar to programs
we've written before!

Check to make sure the row
and col are numbers with
isdigit and ensure that they
select a valid and unfilled space
with if statements.

Keep looping until a valid
location is chosen. Update the
board at that spot, then return
the updated board.

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
 while True:
 row = input("Enter a row for " + player + ":")
 col = input("Enter a col for " + player + ":")
 # Make sure it's a number!
 if row.isdigit() and col.isdigit():
 row = int(row)
 col = int(col)
 # Make sure it's in the grid!
 if 0 <= row < 3 and 0 <= col < 3:
 if board[row][col] == ".":
 board[row][col] = player
 # stop looping when move is made
 return board
 else:
 print("That space isn't open!")
 else:
 print("Not a valid space!")
 else:
 print("That's not a number!")

19

isGameOver needs more helper functions

isGameOver is a bit more complicated.
There are multiple scenarios where the
game can end- if a player gets three in a
row horizontally, or vertically, or diagonally.
The game can also end if the board is filled.

Use more helper functions to break up the
work into parts! Generate strings holding all
rows/columns/diagonals with horizLines,
vertLines, and diagLines. Check if the
board is already full with isFull.

Now we can write the function assuming
these helpers already work.

True if game is over, False if not
def isGameOver(board):
 if isFull(board):
 return True
 allLines = horizLines(board) + \
 vertLines(board) + \
 diagLines(board)
 for line in allLines:
 if line == "XXX" or \
 line == "OOO":
 return True
 return False

20

isGameOver Helpers

Generate all horizontal lines
def horizLines(board):
 lines = []
 for row in range(3):
 lines.append(board[row][0] + \
 board[row][1] + \
 board[row][2])
 return lines

Generate all vertical lines
def vertLines(board):
 lines = []
 for col in range(3):
 lines.append(board[0][col] + \
 board[1][col] + \
 board[2][col])
 return lines

Generate both diagonal lines
def diagLines(board):
 leftDown = board[0][0] + \
 board[1][1] + \
 board[2][2]
 rightDown = board[0][2] + \
 board[1][1] + \
 board[2][0]
 return [leftDown, rightDown]

Check if the board has no empty spots
def isFull(board):
 for row in range(3):
 for col in range(3):
 if board[row][col] == ".":
 return False
 return True 21

Again, we can create the helper functions
for isGameOver using familiar logic.

Functions Work Together

Put it all together and you've got a fully working Tic-Tac-Toe game!

The most important takeaways are:
• Use helper functions to separate out complicated subtasks and

make the overall task easier to represent
• Thoughtfully consider which data will need to be passed into

each helper function call so it can find the correct answer
• Keep track of which data will be returned by each function call

22

Reading Data from Files

23

When building more complex programs, we will often want to
read data stored in a file.

Recall that all the files on your computer are organized in directories, or
folders. The file structure in your computer is a tree – directories are the inner
nodes (recursively nested) and files are the leaves.

When you're working with files, always make sure you know which sequence of
folders your file is located in. A sequence of folders from the top-level of the
computer to a specific file is called a filepath.

For example, Users > rware > Documents > sample.txt refers to the file
sample.txt in the Documents folder, which is in the rware folder, which is in
the Users folder, which is at the top level of the computer.

24

We can open files in Python using the built-in function
open(filepath).

This will create a File object which we can read from or write to.

f = open("/Users/rware/Documents/sample.txt")

open can either take a full filepath or a relative path (relative from the
location of the python file). It's usually easiest to put the file you want to
read/write in the same directory as the python file so you can simply refer
to the filename directly.

f = open("sample.txt")

if .py file is in Documents, will search for this file
there

26

When opening a file we need to set the mode: whether we plan
to read from or write to the file.

filename = "sample.txt"

f = open(filename, "r") # read mode

text = f.read() # reads the whole file as a single string

or

lines = f.readlines() # reads the lines of a file as a list of strings

f = open("sample2.txt", "w") # write mode

f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once
you're done with it.

f.close()

28

Be Careful When Programming With Files!

WARNING: when you write to files in Python, backups are not
preserved. If you overwrite a file, the previous contents are gone
forever.

Be careful when writing to files! Make sure you're using the
correct filename before you run the program. Avoid overwriting
original data whenever possible; you can always wait and delete it
after you're done.

30

Activity: Read a File

You do: Download the file
chat.txt from the schedule
page and move it to the same
folder as a python script.

Try using open and read to
open the file and read the
contents, then print the
contents.

Common file reading issues:
• make sure the file is actually in

the same directory as your
python script (check directory
in the %cd line when you run
Thonny)

• make sure the filename you've
entered is actually the right
filename (including the filetype
at the end!)

32

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

33

