Parallel Programming

15-110 — Friday 10/25

Announcements

e Hw4 due on Monday
® Remember —it's large! Don't leave it until the last minute!

o Will post midsemester surveys tonight: completing them will by

the deadline will be 1 bonus point on a quizlet!
e Look out for a Piazza post

We’ve finished Unit 2!

Unit 5: CS In The World

Unit 4: CS As a Tool

Unit 3: Scaling Up
Computing

Unit 2: Data Structures
and Efficiency

Unit 1: Programming
Skills & Computer
Organization

The topics we cover in this
course build on each
other!

Unit 2: Data Structures
and Efficiency

Exam 2 covers Unit 2:

_ists and Methods
References and Memory
Recursion

Search Algorithms
Dictionaries

Runtime and Big-O Notation
Trees

Graphs

Tractabillity

Unit 3 Topics:

Scaling Up Computing:
e How is it possible for complex

algorithms on huge sets of data (like

Unit 3: Scaling Up Google search) to run quickly?
Computing

e How can we write algorithms that work
across multiple computers, instead of
running on just one machine?

Learning Goals

® Recognize and define the following keywords: concurrency,
parallel programming, CPU, scheduler, throughput,
multitasking, multiprocessing, and deadlock

e Calculate the total steps and time steps taken by a parallel
algorithm

e Create pipelines to increase the efficiency of repeated
operations by splitting steps across cores

\

Transistors Provide Electronic Switching

Logical gates are made out of small electronic switches called
transistors. Over time, we have learned to make transistors
smaller and smaller, which allows us to:

« Run computers at faster clock speeds

« Add more complexity into a small device

« Use less power

This means we have much faster and more powerful computers
than prior generations.

Switch From Smaller Transistors to Concurrency

For a while, engineers were able to double the speed of
computers every two years by increasing the density of
transistors in a computer.

However, around 2010 it became physically impossible to keep
up this doubling rate because of physical limitations related to
power and heat.

Alternate strategy: Create computers that can run multiple
smaller programs at the same time. This is called
concurrency.

CPUs and Multitasking

A CPU (aka core), is composed of lots of circuits that actually run a
program: control unit, logic units, and registers.

Control unit: maps the individual
steps taken by a program to
specific circuits.

Logic units: individual circuits
that can perform simple
operations (like addition and

multiplication).

Registers: store information Control Unit | | Registers
and act as very fast temporary
memory. Logic Unit

Central Processing Unit

14

Computers also have memory that the CPU can read from and
write to.

Reading/writing to memory is

how the CPU can load CPU

iInstructions and save

results. Input > lT —» Output
: . Memory

Combine a CPU with

memory and basic

mechanisms for input and
output, and you've got a This organization of CPU, memory, input, and
simple abstract Computer! output is called a von Neumann architecture.

The CPU decided what action to take next using a scheduler.

When you use a computer, you likely
have multiple applications open and N‘ e m
\

running at any given moment. How
does the CPU decide what action to
take next?

The scheduler is a computer

component that takes information Scheduler
from the programs that are currently
running and input from the user and l@
decides which program gets to use

the CPU.

CPU

16

The scheduler uses multitasking to make programs appear to
run at the same time.

The scheduler can make programs appear to run at the same time by
breaking each application's process into steps, then alternating between
the steps rapidly.

This is called multitasking.

Process 1: pyn run run
run run

time 17

The scheduler chooses which order to run the steps in to maximize
throughput for the user.

When two (or more) processes are
running at the same time, the steps
don't need to alternate perfecitly.

The scheduler may choose to run Process 1: pyn run

several steps of one process before

switching to another. stepl Ml step2
run run

In general, the scheduler chooses _

which order to run the steps in to Process 3)

maximize throughput for the user. run

Throughput is the amount of work a time

computer can do during a set length
of time.

18

You can see what processes are running on your computer using

a process monitor.

You can see all the applications and
background processes your computer's
scheduler is managing by going to your
process manager:

« Windows: Task Manager
« Mac: Activity Monitor
« Linux: htop

You can even see how much time each
process gets on the CPU!

You do: open your process manager now
to see how much CPU time each
application takes

1./ Task Manager

File Options View
Processes Performance App history Startup Users Details Services
~ 27%
Name Status CPU
Apps (6)
€ Google Chrome (13) 1.3%
n PowerPoint 0%
=) Snagit (32 bit) (3) 43%
B sublime Text (2) 0%
L Task Manager 1.2%
= Windows Explorer 2.0%

Background processes (129)
@) 64-bit Synaptics Pointing Enhan...
m AcroTray (32 bit)

] Adobe Acrobat Update Service ...
Adobe CEF Helper

&= Adobe Collaboration Synchroni...

Fewer details

0%

0%

0%

0%

0%

54%
Memory

539.6 MB
125.4 MB
68.1 MB
1.9 MB
29.6 MB

64.8 MB

0.1 MB
0.1 MB
0.1 MB
11.6 MB

0.5 MB

2%
Disk

0.1 MB/s
0 MB/s
0.1 MB/s
0 MB/s
0 MB/s

0.1 MB/s

0 MB/s
0 MB/s
0 MB/s
0 MB/s

0 MB/s

0%
Network

0 Mbps
0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

0 Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

6%
GPU

0%

0%

1.5%

0%

0%

0%

0%

0%

0%

0%

0%

Multitasking is very useful, but it doesn't increase the speed
of a complex algorithm.

A single CPU can still only run one action at a time, so an algorithm
is still limited to the CPU’s maximum number of instructions per
second.

How can we speed up algorithms? We can use multiple CPUs!

Multiprocessing and Parallel Programming

Multiprocessing is a method of concurrency where you run multiple
actions at the exact same time on a single computer.

To make this possible, you put multiple CPUs inside a single
computer. Then the computer can send different actions to
different CPUs at the same time.

If you have two CPUs instead of one, you can theoretically double
the speed of your computer. With four CPUs, you could quadruple
it!

With multiprocessing we can run our applications
simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work
independently.

. . Process 3: nun run run
Multiple cores and multiple [on Core 1]

processors are slightly : !
different approaches in R
practice, but we’ll treat them Fun run
as the same in this class.

time

23

Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing,
where we condense all of the steps of an application into one block.

Core 1 Microsoft Word
Core 2 Firefox

Core 3 Thonny

Core 4 oom

24

The number of cores we have on a single computer is usually
still limited.

Most modern computers use somewhere between 2-16 cores. If
you run more applications than you have cores, the cores use
multitasking to make them appear to run concurrently.

You can check how many cores your own computer has! If you're
on Windows, go back to the process manager and switch to the tab
'Performance’. If you're on a Mac, go to About This Mac > System
Report > Hardware. On Linux, run 1scpu.

Computers combine schedulings with multiprocessing and
multitasking to try and achieve as much concurrency as
possible.

Here's a simplified view of what scheduling might look like when we
combine multiprocessing with multitasking.

Core 1l Microsoft Word PPT Microsoft Word PPT Microsoft Word PPT

Core 2

Core 3

Core 4

26

Parallel programming divides a single program amongst
multiple CPUs.

Parallel programming is a type of multiprocessing where we run a
single process or program on multiple CPUs at the same time, so
that the work can get done a lot faster!

Unfortunately, not all algorithms can be easily split between
multiple CPUs...

Parallel programming tends to be more difficult than regular
programming.

To solve a problem using parallel programming, we must design
algorithms that can be split across multiple processes. This varies

greatly in difficulty based on the problem we're solving!

We won't write actual parallel programs in this class. But we will
talk about common algorithmic approaches for writing parallel

code.

We can sum a list concurrently.

VoM MV

25

29

To determine the efficiency of a parallel algorithm, it helps to
compare the total number of steps to the number of time steps.

The total number of steps is just the number of actions taking
place across all CPUs in the whole process. For summing the
previous tree that is always 7 steps, whether or not we use
parallelization.

The number of time steps is the number of steps taken over
time. Multiple actions can be merged into a single time step when
they happen at the same time. Summing the list sequentially takes
seven time steps, but summing the tree concurrently only takes
three time steps.

We can sum a tree concurrently.

We showed in class how to write a function that
can sum all the nodes in a tree that ran in O(n)
time sequentially, since each node needs to be
visited. What if we do it concurrently?

We do up to two recursive calls in each
recursive case (one on the left child, one on the
right). Call the left child recursively on the
current core and send the right child's call to a
new core. This lets us do the two recursive
calls concurrently. In our example to the right,
this is shown using different colors for each
core.

Summing a tree concurrently is O(log n).

How can we calculate the efficiency of
concurrent tree summing? Consider the

original core, which does the most steps.

This will only do one call per level of the
tree.

If the tree is balanced (and if we have
enough cores), it will have log n levels.
Concurrent tree-summing is O(log n).

It is difficult to write parallel programs with concurrent loops.

We could plan to identify all the iterations of the loop and run each
iteration on a separate core. But what if the results of all the
iterations need to be combined? And what if each iteration depends
on the result of the previous one? This gets even harder if we don't
know how many iterations there will be overall, like when we use a
while loop.

A bit later, we'll talk about how to use algorithmic plans to address
these difficulties.

It is difficult to write parallel programs when multiple cores need to
share individual resources on a single machine.

For example, two different

programs might want to

access the same part of CPU CPU

the computer's memory at

the same time. They might Input > \‘\ - Output
both want to update the

computer's screen or play Memory

audio over the computer's

speaker.

To avoid this making bad concurrent updates, programs put a
lock on a shared resource when they access it.

We can't just let two programs update a resource simultaneously- this will result in garbled
results that the user can't understand. For example, if one program wants to print "Hello
World" to the console and the other wants to print "Good Morning", the user might end up
seeing "Hello Good World Morning".

To avoid this situation, programs put a lock on a shared resource when they access it. While
a resource is locked, no other program can access it.

Then, when a program is done with a resource, it yields that resource back to the computer
system, where it can be sent to the next program that wants it.

Sidebar: if we want two programs to use a resource simultaneously, we usually use a third
program to combine the actions together, and that third program is the one that accesses the
resource. For example, if you listen to music while watching a lecture recording, your
computer mixes the two audio tracks together and plays the combined result.

Deadlock occurs when the system stalls because multiple
programs want to use the same resource at the same time.

For example: Two programs,
Youtube and Zoom, both want to
access the screen and audio. They
put their requests in at the same
time, and the computer gives the
screen to Youtube and the audio to
Zoom.

Both programs will lock the resource
they have, then wait for the next
resource to become available. Since
they're waiting on each other,
they'll wait forever! This is known
as deadlock.

o B
o P

37

In general, deadlock occurs when two or more processes are all
waiting for some resource that other processes in the group
already hold.

Deadlock can happen in real life!
For example, if enough cars edge
into traffic at four-way
Intersections, the intersections
can get locked such that no one
can move forward.

In the example to the right, each
direction of traffic needs two of
the intersection spots, but only
has one. All four directions are
blocked as a result.

38

To fix deadlock we can impose an order that programs always
follow when requesting resources.

For example, maybe Youtube
and Zoom must receive the
screen lock before they can
request the audio. When > =
Youtube gets the screen, it can
-

make a request for the audio
while Zoom waits for its turn.

When Youtube is done, it will
yield its resources and Zoom
will be able to access them.

39

Sometimes processes need to communicate.

If a single program is split into multiple tasks that run concurrently
Instead, those tasks might need to share partial results as they run.

Data is shared between processes by passing messages. When one
task has found a result, it may send it to the other process before
continuing its own work.

If one process depends on the result of another, it may need to halt its
work while it waits on the message to be delivered. This can slow down
the concurrency, as it takes time for data to be sent between cores or
computers. Example: in tree-summing, a core will need to wait for both
calls to finish before it can sum the results.

There are general algorithmic approaches for message
passing.

Writing algorithms that can pass messages is tricky. To make it

easier, we use general algorithmic approaches that can be adapted
for specific tasks.

We'll discuss one common approach today (pipelining) and
another in the next lecture (MapReduce).

Pipelining

In pipelining, you start with a task that repeats the same procedure
over many different pieces of data by creating an assembly line.

The steps of the procedure are
split across different cores. Each
core is like a single worker on an
assembly line; when it is given a
piece of data it executes the step,
then passes the result to the next
core.

Just like in an assembly line, the
cores can run multiple pieces of
data simultaneously by starting
new computations while the
others are still in progress.

44

Demo: Real-Life Pipelining

Let's compare pipelining to sequential work with a real-life race!

We need to generate ten greeting cards. We can divide the process of writing a
greeting card into three steps:

1. Write 'Wish you were here!' on the paper
2. Fold the paper and put it inside an envelope
3. Seal the envelope

What happens if we have one process (personz complete all three tasks vs.
having three processes (people) complete the tasks using a pipeline?

Sequential Pizza — 1 worker, 1 oven, 12 steps

Here's an example of pipelining through the lens of line cooking. To make a
pizza, we must:

1. Flatten the dough

2. Apply the toppings

3. Bake in the oven

If we need to make four pizzas without parallelization, it will look like this:
WA W-D-A-W-D-A-W *G*@

This takes 12 total steps. What if we used pipelining?

Pipelining Pizza - 3 workers, 1 oven, 6 steps

Worker 1:

Worker 2:

Worker 3:

Each worker has one task. #1 flattens dough, #2 arranges toppings, #3 bakes in the oven.
There are still 12 total steps, but only 6 time steps occur.

There are several rules to remember when creating pipelines.

When designing a pipeling, it's important to remember that each
step relies on the step that came before it. You cannot start
applying toppings until the dough has been flattened.

Additionally, the length of time that the pipelining process takes
depends on the longest step. If flattening dough and applying
toppings are fast (maybe 5 minutes each) but cooking in the oven is
slow (maybe 20 minutes), the whole process will have to wait on the
slowest step to conclude.

Pipelining is most useful when the number of shared
resources is limited.

For example, you probably use pipelining when doing laundry at
home, because you have a limited number of washers and driers to
work with!

In computer science, pipelining is used to increase the efficiency of
certain operations, like matrix multiplication. It is also used in the
Fetch-Decode-Execute cycle, which is how the CPU processes
instructions.

Learning Goals

® Recognize and define the following keywords: concurrency,
parallel programming, CPU, scheduler, throughput,
multitasking, multiprocessing, and deadlock

e Calculate the total steps and time steps taken by a parallel
algorithm

e Create pipelines to increase the efficiency of repeated
operations by splitting steps across cores

