
Tractability
15-110 – Wednesday 10/23

Quizlet

2

Announcements

• Hw4 due Monday
• If you haven't started yet, start now!!

• Mid-semester grades

3

Learning Goals
• Identify brute force approaches to common problems that run in O(n!) or

O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are
important

• Identify whether an algorithm is tractable or intractable, and whether it is in
P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial
time

4

Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still
need to answer a big question: can all algorithms be made
efficient? And, importantly, what does it mean to be efficient?

To answer these questions, we'll consider a collection of important
computational problems. While considering these problems, ask
yourself: how efficient are these solutions? Could we make them
better?

5

Computationally Difficult Problems

6

There are many problems that are actually really hard for
computers to solve quickly.

Let’s talk about a couple of examples:

● The Traveling Salesperson Problem

● Puzzle Solving

● Subset Sum

● Boolean Satisfiability

● Exam Scheduling

7

Traveling Salesperson Problem (TSP): Given a map, find the
shortest possible route for our traveler to visit every city, and then
return home.

Example application:
Finding the shortest route for a
postal work to deliver everyone’s
mail and then return to the post
office.

9

Traveling Salesperson Problem (TSP): Given a map, find the
shortest possible route for our traveler to visit every city, and then
return home.

Example application:
Finding the shortest route for a
postal work to deliver everyone’s
mail and then return to the post
office.

CS problem:
Given an undirected weighted
graph, find the shortest path
starting from node N that visits all
the nodes and ends at N.

10

Traveling Salesperson Problem (TSP): Given a map, find the
shortest possible route for our traveler to visit every city, and then
return home.
One possible solution:
Calculate every possible route,
from starting node to all the other
nodes and pick the shortest
route.

For example: Assume starting
from Pittsburgh. How many
possible routes are there? What
is the shortest route?

11

This is a brute force algorithm!

Brute force algorithms are simple: generate every possible
solution, then check each possible solution to see if it meets the
problem’s constraints.

Brute force algorithms are easy to understand, implement, and test.
They also apply to a wide range of problems, which makes them
useful.

However, brute force algorithms are inefficient!

12

In the worst case, our TSP brute force algorithm is O(n!)

The worst case input for a TSP
is a fully connected graph.

For a graph with n nodes:
The number of possible routes is
(n-1) * (n-2) * (n-3) * … * 1 = n!

O(n!) is really inefficent!

13

Puzzle solving: Given a set of pieces is there a solution?

Solve a basic puzzle by putting
together square pieces (like the
ones shown to the right) so that
any two pieces that are touching
each other make a figure with a
head and feet of the same color.

Assume can’t rotate pieces.

14

Puzzle solving: Given a set of pieces is there a solution?

Brute force algorithm:
Try all possible pieces for each
location.

In the example to the right there
are 9 options for the first position,
8 for the second, 7 for the third,
etc.... it's O(n!) time again.

15

9 choices 8 choices 7 choices

6 choices 5 choices 4 choices

3 choices 2 choices 1 choice

O(n!) is a really bad runtime.

16

Let's say we want to solve the puzzle and it takes us 1 millisecond to
setup a specific ordering of the pieces and check the solution.

Where n is the number of puzzle pieces:

n time to solve: O(n!)

9 6.048 minutes

16 663.46 years!

Subset Sum: Given a list of numbers and a target number x,
determine if some subset of these numbers will sum to x.

Example application:
From a list of popular songs,
make a playlist that is exactly 2
hours long.

Brute force algorithm:
Generate all possible subsets
and check if any of them sum to
x.

17

Subset Sum: Given a list of numbers and a target number x,
determine if some subset of these numbers will sum to x.

Use recursion to generate all
subsets of [1,2,3]:
If we have all four subsets of the
list [2, 3] we can use them to
create all 8 subsets of [1, 2, 3].

We double the number of
subsets with each new number
that is added- this is O(2n).

18

Subsets of [1, 2, 3]:
• []
• [1]

• [2]
• [1, 2]

• [3]
• [1, 3]

• [2, 3]
• [1, 2, 3]

Subsets of [2, 3]:

• []
• [2]
• [3]
• [2, 3]

Boolean Satisfiability: Given a circuit, is there a set of inputs that
will make it output 1?

Example application:
Finding the solution to a Sudoku
puzzle!

Brute force algorithm:
Build a truth table – check the
output of every possible set of
inputs.

Size of truth table doubles each
time we add a new input so O(2n).

19

Inputs for 2 elements

• 0, 0
• 0, 1
• 1, 0
• 1, 1

Inputs for 3 elements

• 0, 0, 0
• 0, 0, 1

• 0, 1, 0
• 0, 1, 1

• 1, 0, 0
• 1, 0, 1

• 1, 1, 0
• 1, 1, 1

Scheduling Final Exams: Schedule exams such that no students
has two final exams at the same time.

CS problem:
Given a list of timeslots for
exams and a dictionary with all
students names mapped to their
classes, generate a schedule
where no student has an exam at
the same time.

20

Scheduling Final Exams: Schedule exams such that no students
has two final exams at the same time.

Brute force solution:
Generate every possible exam
schedule.

If there are n classes that can go
into and k timeslots this is O(kn)!

21

O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want to
solve the subset sum problem and it again takes us 1 millisecond to generate a
specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.

22

Let's say we want to solve the subset sum problem and it takes us 1
millisecond to generate a specific subset and see if it is equal to the
target.

O(2n) and O(kn) are better than O(n!) but are still really slow.

23

n time to solve: O(2n)

10 1.024 seconds

20 17.48 minutes

30 12.43 days

40 35 years

A problem is said to be tractable if its solution has a runtime that is
reasonable.

A runtime is reasonable if it can
be expressed as a polynomial:

 ckn
k + ck-1n

k-1 + ... + c1n + c0

where n is a variable and ci & k
are constants.

O(1), O(log n), O(n), O(n2), and
O(nk) are all tractable. O(2n), O(kn),
and O(n!) are not- they're
intractable.

24

intractable tractable

Caveat: logarithms are tractable even though they
aren't polynomial, because they're faster than O(n)!

Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and
how that algorithm would be affected by increasing the input size,
you can often determine whether the solution will be tractable or
intractable without digging deeply into the exact runtime.

You do:
• solve a nxn Sudoku puzzle by trying every possible combination

of numbers. Is that tractable or intractable?
• check every pair of elements in a n-element list to see if there are

any duplicates. Is that tractable or intractable?

25

Complexity Classes

26

Can we find tractable solutions to these hard problems?

29

We saw brute force algorithms were intractable.

For the rest of this lecture: can we do better?

Discuss: Can you think of anyway to make solving TSP faster?
Designing new solutions is hard!

We classify the runtime of a problem using computational
complexity theory.

Classifying the complexity of problems helps computer scientists
compare problems based on if they are practically solvable or
unsolvable.

There are two different ways to describe the complexity of a
problem:
● The amount of time it takes to find the solution
● The amount of time it takes to verify the solution

30

Verifying a solution: Given a solution, how long does it take
to check that is a valid solution?

Exam schedule example: How long does it take to check if a
particular configuration of n classes has no student taking a final for
different classes at the same time?

Does this schedule have no
conflicts?

32

Verifying a solution: Given a solution, how long does it take
to check that is a valid solution?

Verifying exam schedule example: (n is the total number of
classes)
For each student, check their exam time slots for conflicts.
Number of classes each student has is constant: we will say no more
than 5.
The number of students is also a constant: we will say 6*n

Therefore, overall we have to do students*conflict-checks = (6*n)*10
work. That's 60n, which is O(n). Verifying the solution is tractable!

34

A complexity class is a collection of problems with similar
runtimes (complexity).

We say that every problem is in a certain complexity class if is
bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that
only includes algorithms which run in O(n) time or faster. This would
also include O(log n) and O(1).

Let’s talk about two important complexity classes: P and NP

36

We define the complexity class P to be the set of problems that we
know can be solved in polynomial time.

Polynomial runtime can be
expressed as:

 ckn
k + ck-1n

k-1 + ... + c1n + c0

where n is a variable and ci & k
are constants.

Intractable problems do not fall
into this category. But plenty of
other algorithms do- linear
search, summing a list, etc.

37

P

linear search

summing a list

We define the complexity class NP to be the set of problems that
can be verified in polynomial time.

All problems in P are also in
NP: If you can solve in
polynomial time then you can
also very in polynomial time.

Examples include exam
scheduling which we could verity
in polynomial time, but could not
solve in polynomial time.

38

NP

P

linear search

summing a list

subset sum

Boolean
satisfiability

puzzle solving

exam
scheduling

Some problems are so hard they are not in NP or P.

Example:
If given a solution to TSP, we
can’t verify it is the best path
without still checking all the other
paths.

We can make TSP NP by
changing the problem: find the
best path that is no more than X
distance. This is easy to verify.

39

All problems

NP

P

linear search

summing a list

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

Important CS Problem: Does P = NP?

40

A core question in computer science: Are the set of all problems in P
the same as all the problems in NP?

Can every problem that we can
verify in polynomial time also be
solved in polynomial time?

We'd be able to solve a lot of
hard problems really quickly,
without having to think hard
about clever new approaches!

All problems

linear search

selection sort

subset sum

Boolean
satisfiability

puzzle solving

Travelling
Salesperson

Less-Than-X
Travelling

Salesperson

exam
scheduling

NP

P

P and NP ?

Does P = NP? is a major unsolved problem in theoretical CS.

The first person who proves whether or not P = NP will win a million
dollars, but no one has proved it yet…

How would we prove this? Why is this so hard to prove?

There are two possible approaches:
1. Prove that P!=NP
2. Prove that P=NP

42

https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems

We can try to prove that P != NP.

Let's assume that P = NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that
cannot be solved in polynomial time. But how can we show that
it's impossible to come up with a clever new algorithm? This is
tricky!

43

We can try to prove that P = NP.

Let's assume that P != NP. How would we prove this?

You need to show that every problem in NP can be solved in
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP
that are related to each other.

44

For example, we can transform subset sum into boolean
satisfiability.

We can make a circuit that uses each
value in the list as an input (0 if it isn't
included, 1 if it is) and make the circuit
output 1 if the included values sum to
the target.

This mapping can be done in
polynomial time. This means that if we
can find a tractable solution to Boolean
satisfiability, we can also use it to make
a tractable solution to subset sum.

45

Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks
if sum = 8

Computer scientists have identified a set of problems that have
this problem-transformation capacity for all NP problems.

If we can find a tractable solution to one of them, we can make
all problems in NP tractable. That will mean that P = NP!

In fact, if you use the limited version of the TSP, all the problems we
discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll
prove P = NP and will become rich and famous.

46

Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard
problems very quickly. NP problems
show up everywhere, so nearly
everything in the world will get
radically faster!

On the other hand, this might also
wreck how modern security and
encryption is implemented (as it will
get easier to break cryptography).

What happens if we prove P !=
NP?

Not much; we'll still be in our
current situation. But a lot of
computer scientists can turn
their focus to other problems.

Most people think P != NP, but
we don't know how to prove it.

47

Heuristics

48

We can solve intractable problems in practice if we can change
our standards: rather than finding the best solution, find a
good-enough solution.
For example:
• In exam scheduling, maybe it's okay if there's a small number of

conflicts that affect < 1% of the student body
• In subset sum, maybe it's okay if we find a subset that is almost

equal to the target, instead of exactly equal

When we're willing to compromise on optimality or accuracy, or put
other restrictions on the data, we can use heuristics to speed up the
process a great deal.

50

A heuristic is a search technique used by an algorithm to find a
good-enough approximate solution to a problem.

Heuristics may not find the best answer to an NP problem, but they
often achieve good results.

A heuristic can generate scores to rank potential next steps that
the algorithm can take at each decision point. By choosing the
highest-scored next step, the algorithm is more likely to find a
working solution quickly.

52

We can use a heuristic to speed up TSP.

Heuristic: Rank the next-possible
paths based on their length.
Choose the next city with the
shortest length.

With this approach, we can
generate a pretty good path in
polynomial time though it may
not be the best possible one.

53

We can also design a heuristic for subset sum.

Heuristic: Assuming positive
numbers, order from largest to
smallest.

Add next number to subset until
we are within 2 of the target. If
we add a number that is too
large, backtrack and try a
different number.

How many subsets do we need to try to
determine if there's a subset of [13, 14, 7, 10,
7, 16, 2, 8, 3, 5] that sums to ~25?

Sort the list: [16, 14, 13, 10, 8, 7, 7, 5, 3, 2]

[16] – too small

[16, 14] – too big, backtrack!

[16, 13] – still too big...

[16, 10] – this is 26, it works!

We missed the optimal solution – [16, 7, 2]
would have been perfect. But we found [16,
10] much faster. 54

Sidebar: Additional Watching

Want to learn more about these topics? Check out the following
videos recommended by prior students!

P vs. NP and the Computational Complexity Zoo:
https://www.youtube.com/watch?v=YX40hbAHx3s

P vs. NP - The Biggest Unsolved Problem in Computer Science:
https://www.youtube.com/watch?v=EHp4FPyajKQ

55

https://www.youtube.com/watch?v=YX40hbAHx3s
https://www.youtube.com/watch?v=EHp4FPyajKQ

Learning Goals
• Identify brute force approaches to common problems that run in O(n!) or

O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are
important

• Identify whether an algorithm is tractable or intractable, and whether it is in
P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial
time

56

