
Tractability
15-110 – Wednesday 10/23



Quizlet

2



Announcements

• Hw4 due Monday
• If you haven't started yet, start now!!

• Mid-semester grades
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Learning Goals
• Identify brute force approaches to common problems that run in O(n!) or 

O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset 
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are 
important

• Identify whether an algorithm is tractable or intractable, and whether it is in 
P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial 
time
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Big Idea: What is Efficient?

As we wrap up the unit on data structures and efficiency, we still 
need to answer a big question: can all algorithms be made 
efficient? And, importantly, what does it mean to be efficient?

To answer these questions, we'll consider a collection of important 
computational problems. While considering these problems, ask 
yourself: how efficient are these solutions? Could we make them 
better?
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Computationally Difficult Problems

6



There are many problems that are actually really hard for 
computers to solve quickly.

Let’s talk about a couple of examples:

● The Traveling Salesperson Problem

● Puzzle Solving

● Subset Sum

● Boolean Satisfiability

● Exam Scheduling
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Traveling Salesperson Problem (TSP): Given a map, find the 
shortest possible route for our traveler to visit every city, and then 
return home. 

Example application:
Finding the shortest route for a 
postal work to deliver everyone’s 
mail and then return to the post 
office.
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Traveling Salesperson Problem (TSP): Given a map, find the 
shortest possible route for our traveler to visit every city, and then 
return home. 

Example application:
Finding the shortest route for a 
postal work to deliver everyone’s 
mail and then return to the post 
office.

CS problem:
Given an undirected weighted 
graph, find the shortest path 
starting from node N that visits all 
the nodes and ends at N.
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Traveling Salesperson Problem (TSP): Given a map, find the 
shortest possible route for our traveler to visit every city, and then 
return home. 
One possible solution:
Calculate every possible route, 
from starting node to all the other 
nodes and pick the shortest 
route.

For example: Assume starting 
from Pittsburgh. How many 
possible routes are there? What 
is the shortest route?
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This is a brute force algorithm!



Brute force algorithms are simple: generate every possible 
solution, then check each possible solution to see if it meets the 
problem’s constraints.

Brute force algorithms are easy to understand, implement, and test. 
They also apply to a wide range of problems, which makes them 
useful.

However, brute force algorithms are inefficient!
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In the worst case, our TSP brute force algorithm is O(n!)

The worst case input for a TSP 
is a fully connected graph.

For a graph with n nodes:
The number of possible routes is 
(n-1) * (n-2) * (n-3) * … * 1 = n!

O(n!) is really inefficent!
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Puzzle solving: Given a set of pieces is there a solution?

Solve a basic puzzle by putting 
together square pieces (like the 
ones shown to the right) so that 
any two pieces that are touching 
each other make a figure with a 
head and feet of the same color.

Assume can’t rotate pieces.
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Puzzle solving: Given a set of pieces is there a solution?

Brute force algorithm:
Try all possible pieces for each 
location.

In the example to the right there 
are 9 options for the first position, 
8 for the second, 7 for the third, 
etc.... it's O(n!) time again.
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9 choices 8 choices 7 choices

6 choices 5 choices 4 choices

3 choices 2 choices 1 choice



O(n!) is a really bad runtime.
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Let's say we want to solve the puzzle and it takes us 1 millisecond to 
setup a specific ordering of the pieces and check the solution.

Where n is the number of puzzle pieces:

n time to solve: O(n!)

9 6.048 minutes

16 663.46 years!



Subset Sum: Given a list of numbers and a target number x, 
determine if some subset of these numbers will sum to x.  

Example application: 
From a list of popular songs, 
make a playlist that is exactly 2 
hours long.

Brute force algorithm:
Generate all possible subsets 
and check if any of them sum to 
x. 
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Subset Sum: Given a list of numbers and a target number x, 
determine if some subset of these numbers will sum to x.  

Use recursion to generate all 
subsets of [1,2,3]:
If we have all four subsets of the 
list [2, 3] we can use them to 
create all 8 subsets of [1, 2, 3]. 

We double the number of 
subsets with each new number 
that is added- this is O(2n).
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Subsets of [1, 2, 3]:
• []
• [1] 

• [2]
• [1, 2]

• [3]
• [1, 3]

• [2, 3] 
• [1, 2, 3]

Subsets of [2, 3]:

• []
• [2]
• [3]
• [2, 3]



Boolean Satisfiability: Given a circuit, is there a set of inputs that 
will make it output 1?

Example application: 
Finding the solution to a Sudoku 
puzzle!

Brute force algorithm: 
Build a truth table – check the 
output of every possible set of 
inputs. 

Size of truth table doubles each 
time we add a new input so O(2n).
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Inputs for 2 elements

• 0, 0
• 0, 1
• 1, 0
• 1, 1

Inputs for 3 elements

• 0, 0, 0
• 0, 0, 1

• 0, 1, 0
• 0, 1, 1

• 1, 0, 0
• 1, 0, 1

• 1, 1, 0
• 1, 1, 1



Scheduling Final Exams: Schedule exams such that no students 
has two final exams at the same time. 

CS problem:
Given a list of timeslots for 
exams and a dictionary with all 
students names mapped to their 
classes, generate a schedule 
where no student has an exam at 
the same time.
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Scheduling Final Exams: Schedule exams such that no students 
has two final exams at the same time. 

Brute force solution:
Generate every possible exam 
schedule.

If there are n classes that can go 
into and k timeslots this is O(kn)!
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O(2n) and O(kn) are Still Really Slow

O(2n) is a bit better than O(n!), but not that much better. Let's say we want to 
solve the subset sum problem and it again takes us 1 millisecond to generate a 
specific subset and see if it is equal to the target.

If n = 10, we find the solution in 1.024 seconds. Much better!

But if n = 20, we find the solution in 17.48 minutes...

And if n = 30, it will take us 12.43 days. By the time n = 40, it takes 35 years.

O(2n) is not as bad as O(n!), but it's still really bad.
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Let's say we want to solve the subset sum problem and it takes us 1 
millisecond to generate a specific subset and see if it is equal to the 
target.

O(2n) and O(kn) are better than O(n!) but are still really slow.
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n time to solve: O(2n)

10 1.024 seconds

20 17.48 minutes

30 12.43 days

40 35 years



A problem is said to be tractable if its solution has a runtime that is 
reasonable.

A runtime is reasonable if it can 
be expressed as a polynomial:

 ckn
k + ck-1n

k-1 + ... + c1n + c0

where n is a variable and ci & k 
are constants.

O(1), O(log n), O(n), O(n2), and 
O(nk) are all tractable. O(2n), O(kn), 
and O(n!) are not- they're 
intractable. 
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intractable tractable

Caveat: logarithms are tractable even though they 
aren't polynomial, because they're faster than O(n)!



Activity: Identify the Solution Runtime

If you consider how a brute-force solution generates solutions, and 
how that algorithm would be affected by increasing the input size, 
you can often determine whether the solution will be tractable or 
intractable without digging deeply into the exact runtime.

You do:
• solve a nxn Sudoku puzzle by trying every possible combination 

of numbers. Is that tractable or intractable?
• check every pair of elements in a n-element list to see if there are 

any duplicates. Is that tractable or intractable?
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Complexity Classes
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Can we find tractable solutions to these hard problems?
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We saw brute force algorithms were intractable.

For the rest of this lecture: can we do better?

Discuss: Can you think of anyway to make solving TSP faster? 
Designing new solutions is hard!



We classify the runtime of a problem using computational 
complexity theory. 

Classifying the complexity of problems helps computer scientists 
compare problems based on if they are practically solvable or 
unsolvable.

There are two different ways to describe the complexity of a 
problem:
● The amount of time it takes to find the solution
● The amount of time it takes to verify the solution
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Verifying a solution: Given a solution, how long does it take 
to check that is a valid solution?

Exam schedule example: How long does it take to check if a 
particular configuration of n classes has no student taking a final for 
different classes at the same time?

Does this schedule have no
conflicts?
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Verifying a solution: Given a solution, how long does it take 
to check that is a valid solution?

Verifying exam schedule example: (n is the total number of 
classes)
For each student, check their exam time slots for conflicts.
Number of classes each student has is constant: we will say no more 
than 5.
The number of students is also a constant: we will say 6*n

Therefore, overall we have to do students*conflict-checks = (6*n)*10 
work. That's 60n, which is O(n). Verifying the solution is tractable!
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A complexity class is a collection of problems with similar 
runtimes (complexity).

We say that every problem is in a certain complexity class if is 
bounded by a certain runtime.

For example, we could design a complexity class called 'Fast' that 
only includes algorithms which run in O(n) time or faster. This would 
also include O(log n) and O(1).

Let’s talk about two important complexity classes: P and NP
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We define the complexity class P to be the set of problems that we 
know can be solved in polynomial time.

Polynomial runtime can be 
expressed as:

 ckn
k + ck-1n

k-1 + ... + c1n + c0

where n is a variable and ci & k 
are constants.

Intractable problems do not fall 
into this category. But plenty of 
other algorithms do- linear 
search, summing a list, etc.
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P

linear search

summing a list



We define the complexity class NP to be the set of problems that 
can be verified in polynomial time.

All problems in P are also in 
NP: If you can solve in 
polynomial time then you can 
also very in polynomial time.

Examples include exam 
scheduling which we could verity 
in polynomial time, but could not 
solve in polynomial time.
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NP

P

linear search

summing a list

subset sum

Boolean 
satisfiability

puzzle solving

exam 
scheduling



Some problems are so hard they are not in NP or P.

Example:
If given a solution to TSP, we 
can’t verify it is the best path 
without still checking all the other 
paths.

We can make TSP NP by 
changing the problem: find the 
best path that is no more than X 
distance.  This is easy to verify.
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All problems

NP

P

linear search

summing a list

subset sum

Boolean 
satisfiability

puzzle solving

Travelling 
Salesperson

Less-Than-X 
Travelling 

Salesperson

exam 
scheduling



Important CS Problem: Does P = NP?
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A core question in computer science: Are the set of all problems in P 
the same as all the problems in NP?  

Can every problem that we can 
verify in polynomial time also be 
solved in polynomial time?

We'd be able to solve a lot of 
hard problems really quickly, 
without having to think hard 
about clever new approaches!

All problems

linear search

selection sort

subset sum

Boolean 
satisfiability

puzzle solving

Travelling 
Salesperson

Less-Than-X 
Travelling 

Salesperson

exam 
scheduling

NP

P

P and NP ?



Does P = NP? is a major unsolved problem in theoretical CS.

The first person who proves whether or not P = NP will win a million 
dollars, but no one has proved it yet…

How would we prove this? Why is this so hard to prove?

There are two possible approaches:
1. Prove that P!=NP
2. Prove that P=NP
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https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems


We can try to prove that P != NP.

Let's assume that P = NP. How would we prove this?

You'd need to definitively prove that a problem in NP exists that 
cannot be solved in polynomial time. But how can we show that 
it's impossible to come up with a clever new algorithm? This is 
tricky!

43



We can try to prove that P = NP.

Let's assume that P != NP. How would we prove this?

You need to show that every problem in NP can be solved in 
polynomial time. That's a lot of problems!

To make this easier, computer scientists try to find problems in NP 
that are related to each other.
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For example, we can transform subset sum into boolean 
satisfiability.  

We can make a circuit that uses each 
value in the list as an input (0 if it isn't 
included, 1 if it is) and make the circuit 
output 1 if the included values sum to 
the target. 

This mapping can be done in 
polynomial time. This means that if we 
can find a tractable solution to Boolean 
satisfiability, we can also use it to make 
a tractable solution to subset sum.
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Find a subset of [4, 2, 7, 13] that sums to 8

Set the inputs so that the circuit outputs 1

Circuit that checks 
if sum = 8



Computer scientists have identified a set of problems that have 
this problem-transformation capacity for all NP problems.

If we can find a tractable solution to one of them, we can make 
all problems in NP tractable. That will mean that P = NP!

In fact, if you use the limited version of the TSP, all the problems we 
discussed today are in this set of problems.

If you can find a tractable solution to any of these problems, you'll 
prove  P = NP and will become rich and famous.
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Possible Outcomes

What happens if we prove P = NP?

We'll be able to solve a lot of hard 
problems very quickly. NP problems 
show up everywhere, so nearly 
everything in the world will get 
radically faster!

On the other hand, this might also 
wreck how modern security and 
encryption is implemented (as it will 
get easier to break cryptography).

What happens if we prove P != 
NP?

Not much; we'll still be in our 
current situation. But a lot of 
computer scientists can turn 
their focus to other problems.

Most people think P != NP, but 
we don't know how to prove it.
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Heuristics
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We can solve intractable problems in practice if we can change 
our standards: rather than finding the best solution, find a 
good-enough solution.
For example:
• In exam scheduling, maybe it's okay if there's a small number of 

conflicts that affect < 1% of the student body
• In subset sum, maybe it's okay if we find a subset that is almost 

equal to the target, instead of exactly equal

When we're willing to compromise on optimality or accuracy, or put 
other restrictions on the data, we can use heuristics to speed up the 
process a great deal.
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A heuristic is a search technique used by an algorithm to find a 
good-enough approximate solution to a problem.

Heuristics may not find the best answer to an NP problem, but they 
often achieve good results.

A heuristic can generate scores to rank potential next steps that 
the algorithm can take at each decision point. By choosing the 
highest-scored next step, the algorithm is more likely to find a 
working solution quickly.
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We can use a heuristic to speed up TSP.

Heuristic: Rank the next-possible 
paths based on their length. 
Choose the next city with the 
shortest length.

With this approach, we can 
generate a pretty good path in 
polynomial time though it may 
not be the best possible one.
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We can also design a heuristic for subset sum.

Heuristic: Assuming positive 
numbers, order from largest to 
smallest.

Add next number to subset until 
we are within 2 of the target. If 
we add a number that is too 
large, backtrack and try a 
different number.

How many subsets do we need to try to 
determine if there's a subset of [13, 14, 7, 10, 
7, 16, 2, 8, 3, 5] that sums to ~25?

Sort the list: [16, 14, 13, 10, 8, 7, 7, 5, 3, 2]

[16] – too small

[16, 14] – too big, backtrack!

[16, 13] – still too big...

[16, 10] – this is 26, it works!

We missed the optimal solution – [16, 7, 2] 
would have been perfect. But we found [16, 
10] much faster. 54



Sidebar: Additional Watching

Want to learn more about these topics? Check out the following 
videos recommended by prior students!

P vs. NP and the Computational Complexity Zoo: 
https://www.youtube.com/watch?v=YX40hbAHx3s

P vs. NP - The Biggest Unsolved Problem in Computer Science: 
https://www.youtube.com/watch?v=EHp4FPyajKQ
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https://www.youtube.com/watch?v=YX40hbAHx3s
https://www.youtube.com/watch?v=EHp4FPyajKQ


Learning Goals
• Identify brute force approaches to common problems that run in O(n!) or 

O(2n), including solutions to Travelling Salesperson, puzzle-solving, subset 
sum, Boolean satisfiability, and exam scheduling

• Define the complexity classes P and NP and explain why these classes are 
important

• Identify whether an algorithm is tractable or intractable, and whether it is in 
P, NP, or neither complexity class

• Use heuristics to find good-enough solutions to NP problems in polynomial 
time
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