
Search Algorithms II
15-110 – Monday 10/21

Announcements

• Welcome back from fall break!

• Check3/Hw3 Revision deadline: tomorrow at noon

• Final exam scheduled: Monday, Dec 9, 2024, 01:00pm-04:00pm
• Do not schedule travel before this time!

• Last day for voter registration in PA!

2

Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search
tree (BST)

• Search for values in trees using linear search and in BSTs using
binary search

• Analyze the efficiency of binary search on a balanced vs.
unbalanced BSTs

• Recognize the requirements for building a good hash function
and a good hash table that lead to constant-time search

3

Binary Search Trees

4

5

Revisiting search: Like we searched lists we can also search
other data structures.

Recall we implemented binary and linear search on lists. We can
also do search on trees.

6

3 2

7 98

Is 2 in the tree?

To do linear search on a tree, visit every node using recursion until
we find the value.

Recursive case: Check if
root node is the value we are
looking for. Search the left
subtree, search the right
subtree.

Base case: If the tree is
empty, return False.

6

def search(t, target):

 if t == None:

 return False

 else:

 if t["contents"] == target:

 return True

 leftSide = search(t["left"], target)

 rightSide = search(t["right"], target)

 return leftSide or rightSide

To do binary search on a tree, our tree must be sorted. Binary
search trees (BST), are a special binary tree that is sorted.

A BST has these constraints:
For every node n with value v:
• Each left child (and all its

children, etc.) must have
values strictly less than v

• Each right child (and all its
children, etc.) must have
values strictly greater than v

8

7

3 8

6 92

4

71

6

9

8

3

Example: Is this a BST?

9

3

51

4

6

82

Searching a BST with binary search:

If we are searching for 6:

10

7

3 8

6 92

7

3

6

6 > 3: So we only have to
search the right subtree.

6 < 7: So we only have to
search the left subtree

We would write binary search for a BST in Python:

def search(t, target):

 if t == None:

 return False

 else:

 if t["contents"] == target:

 return True

 elif target < t["contents"]:

 return search(t["left"], target)

 else:

 return search(t["right"], target)

12

We do just one recursive call, either on the left subtree or on the
right subtree.

The runtime of binary search on a balanced tree is O(log n).

A tree is balanced if for every
node in the tree, the node's left
and right subtrees are
approximately the same size.

This results in a tree that
minimizes the number of
recursive levels.

Every time you take a search
step in a balanced tree, you cut
the number of nodes to be
searched in half.

13

6

3 8

5 92 7

The runtime of binary search on an unbalanced tree is O(n).

A tree is considered unbalanced
if at least one node has
significantly different sizes in
its left and right children.

This is a valid BST, but it is still
difficult to search! You must visit
every single node to determine a
number like 6 isn't in the tree. In
the worst case, this can still take
O(n) time.

14

9

8

5

3

7

BST does have benefits over a list.

It is easier to add things to a
BST while keeping the data
structure sorted.

This is very helpful for systems
like hospital priority queues,
where patients frequently need to
be moved around the queue
based on changing
circumstances.

15

3

51

4

6

82

9

Can we do even better than binary and linear search?

We did better than linear search by assuming that the list was sorted.

We can often increase the efficiency of an algorithm by thinking
about the problem in a different way. Try using a different data
structure or an entirely different algorithmic approach to solve the
problem. Or try putting new constraints on the problem to speed
the process up.

Goal: Can we add additional constraints to design the fastest
possible search algorithm?

16

Optimizing Search w/ Constraints

17

Search in Real Life – Post Mail Boxes

18

Consider how you receive mail. Your mail is sent to the
post boxes at the lower level of the UC. Do you have
to check every box to find your mail?

No - you just check the box assigned to you.

This is possible because your mail has an address on the front that includes your
mailbox number. Your mail will only be put into a box that has the same number as that
address, not other random boxes. Picking up your mail is a O(1) operation!

Compare this to picking up a package. Everyone picks up packages at the same
window, so you must wait in line. If there are n students, picking up a package is a O(n)
operation.

Search in Programming – List Indexes

We can look up an item in a list
by its index quickly.

Python stores lists in memory as
a series of adjacent parts. Each
part holds a single value in the
list, and all these parts use the
same amount of space.

Can calculate the memory
location of the item lst[i] quickly.

19

"a" "b" "c"

8 bytes 8 bytes 8 bytes 8 bytes

>> lst[2]
"c"

lst

To implement super-fast search, we want to combine the
ideas of post mail boxes and list index lookup.

We want to determine which index a value should be stored in based
on the value itself.

If we can calculate the index based on the value, we can retrieve
the value really quickly without needing to check other indexes.

20

value index

"apple" 21

"banana" 145

"grape" 62

f("apple") = 21
f("banana") = 145
f("grape") = 62

A function that maps values to integers is a hash function.

21

1. The function should be
deterministic.

2. The function should generally
produce different outputs for
different inputs.

For every value x:
hash(x) must always equal the
same value v

For most values x and y where
x ≠ y:
hash(x) ≠ hash(y)

Good hash functions have the following:

Python has a built-in hash function: hash.

x = "abc"

hash(x) # some giant number

By default, hash only works on immutable objects including: int,
float, bool, str

Question: Why not on mutable objects?

22

Optimizing Search w/ Hash Tables

23

A hash table with 5 buckets:

A hash table uses a hash function to determine where to store
values in N buckets.

24

Each bucket has an index.

When we place a value in the
table, we put it into a bucket
based on its hash value.

0

1

2

3

4

A hash table with 5 buckets:

Example hash table implementation:
With a hash function for integers using mod %

Suppose we have a hash table
with 5 buckets and our input is
always going to be an integer.

We can determine which bucket
to put an integer into with mod:

bucket = value % 5

25

0

1

2

3

4

Insert 2: 2 % 5 = 2

Example hash table implementation:
With a hash function for integers using mod %

Suppose we have a hash table
with 5 buckets and our input is
always going to be an integer.

We can determine which bucket
to put an integer into with mod:

bucket = value % 5

26

0

1

2 2

3

4

Insert 15: 15 % 5 = 0

Example hash table implementation:
With a hash function for integers using mod %

Suppose we have a hash table
with 5 buckets and our input is
always going to be an integer.

We can determine which bucket
to put an integer into with mod:

bucket = value % 5

27

0 15

1

2 2

3

4

Adding 17: 17 % 5 = 2

Example hash table implementation:
With a hash function for integers using mod %

When two inputs map to the
same bucket, this is called a
hash collision.

Question: How to deal with
collisions?
Many possible solutions. One
example is to make the bucket
contain a list.

28

0 [15]

1

2 [2, 17]

3

4

What about a hash function for strings?

Example function:

Compute the len of the string and
use that to determine the bucket.

bucket = len(s) % 5

Insert "grape": 5 % 5 = 0

29

0 "grape"

1

2

3

4

What about a hash function for strings?

Example function:

Compute the len of the string and
use that to determine the bucket.

bucket = len(s) % 5

Insert "banana": 6 % 5 = 1

30

0 "grape"

1 "banana"

2

3

4

Activity: Search a hash table.
Let's say that we want to
algorithmically check whether the
string "apple" is in a hashtable with
1000 buckets.

You do: Which buckets does the
algorithm need to check?

What is the Python code that would
return the bucket to check?

31

0

1

2

3

..

1000

Searching a hash table is O(1).

To search a hash table compute
the hash function and mod by the
number of buckets.

hash(x) % numBuckets

Then you only have to search
one bucket, regardless of the
size of the hashtable! Very fast!

32

0

1

2

3

..

1000

We cannot hash mutable values!

Example:
A hash function for a list that
takes the first element as the
value to hash.

Insertion is ok.

Insert: [2,5,8]

34

0

1

2 [2,5,8]

3

4

5

We cannot hash mutable values!

Example:
A hash function for a list that
takes the first element as the
value to hash.

Insertion is ok.

But lookup is broken. Because
we can change the list, we would
look for it in the wrong place.

Insert 4 at index 0 of [2,5,8]:
:

35

0

1

2 [4,2,5,8]

3

4

5

Dictionaries are implemented using hash tables.

We run the hash function on the
keys to find the values.

This explains why the dictionary
keys:

- Must be immutable
- Have to be unique
- Are unordered

So insertion and lookup
(search) in a dictionary is O(1)!

36

0

1 "B": "bats"

2

3 "A": "ants"

..

N

{"A": "ants", "B": "bats"}

Learning Objectives

• Identify whether a tree is a tree, a binary tree, or a binary search
tree (BST)

• Search for values in trees using linear search and in BSTs using
binary search

• Analyze the efficiency of binary search on a balanced vs.
unbalanced BSTs

• Recognize the requirements for building a good hash function
and a good hash table that lead to constant-time search

40

