15-110 Recitation Week 7

Reminders
® 10/22 Tues - Check3/HW?3 revisions due (Tuesday after break)

® Recitation feedback form

® Have a restful and rejuvenating break!

Overview

Big-O Exercise
For-Iterable Loop Review
Dictionary Code Writing
Tree Code Writing

https://forms.gle/519bDVtMU6mGbH5JA

Problems

BIG-O EXERCISE

Calculate the Big-O for the following examples:

Returning the last character in a string

input size = n
def powersOfTwo (n) :

m =1
while m <= n:
print (m)

m=m* 2

.index (), .pop() are O(n) worst
case!
input size = len(L) = n
def foo (L) :
if L == []:
return O
else:

L.append (L[0])
n = L.index (10)
L.pop (0)
return n

L is a n by n 2D list
input size = n
def tripleLoop (L) :
for 1 in range (20):
for row in L: 0(1)
for elem in row:
print (elem)

FOR-ITERABLE LOOP REVIEW

Notes:

Use this code to answer the following questions:

s = "15-110"

for i in range(len(s)):
print(i)

for i in s:
print(i)

What does each loop print?

What is the data type of i in each loop?

DICTIONARY CODE WRITING

We’re given a dictionary that maps some number of football teams (e.g. CMU, Pitt, OSU, PennState) to the
number of wins and losses they have (represented as [wins, losses]), and an integer representing the minimum
number of games to be considered. We want to return the team with the highest percentage of wins and that has
played the minimum number of games. There will be no ties.

E.g. bestTeam({ "CMU" : [1, 10], "Pitt" : [7, 10], "OSU" : [10, 6], "PennState” : [2, 1] }, 5) returns “OSU”

def bestTeam(winsLosses, minGames) :

bestTeam =

bestPercent =

for team in winsLosses:

wins =
losses =
gamesPlayed = +
if >= minGames:
winPercent = / gamesPlayed
if > bestPercent:
bestPercent =
bestTeam =

return

TREE CODE WRITING

Write the function addEvenLeaves(t) that takes in a dictionary representation of a tree (you can assume

it will have at least 1 node) and returns a sum of only the even values held by leaves.
def addEvenLeaves (tree):
base case: empty tree

if

what should we return?

return

recursive case

else:

result = 0

check if we’re at a leaf

if and

check if its value 1s even

if

result +=

recursively add the even leaves of the subtrees

result +=

return result

