
15-110 RecitationWeek 7
Reminders

● 10/22 Tues - Check3/HW3 revisions due (Tuesday after break)
● Recitation feedback form
● Have a restful and rejuvenating break!

Overview
● Big-O Exercise
● For-Iterable Loop Review
● Dictionary CodeWriting
● Tree CodeWriting

‘

https://forms.gle/519bDVtMU6mGbH5JA

Problems

BIG-O EXERCISE

Calculate the Big-O for the following examples:

Returning the last character in a string

input size = n
def powersOfTwo(n):

m = 1
while m <= n:

print(m)
m = m * 2

.index(), .pop() are O(n) worst
case!
input size = len(L) = n
def foo(L):

if L == []:
return 0

else:
L.append(L[0])
n = L.index(10)
L.pop(0)
return n

L is a n by n 2D list
input size = n
def tripleLoop(L):

for i in range(20):
for row in L: O(1)

for elem in row:
print(elem)

FOR-ITERABLE LOOP REVIEW

Notes:

Use this code to answer the following questions:

s = "15-110"

for i in range(len(s)):

print(i)

for i in s:

print(i)

What does each loop print?

What is the data type of i in each loop?

DICTIONARY CODEWRITING

We’re given a dictionary that maps some number of football teams (e.g. CMU, Pitt, OSU, PennState) to the
number of wins and losses they have (represented as [wins, losses]), and an integer representing the minimum
number of games to be considered. We want to return the team with the highest percentage of wins and that has
played the minimum number of games. There will be no ties.

E.g. bestTeam({ "CMU" : [1, 10], "Pitt" : [7, 10], "OSU" : [10, 6], "PennState" : [2, 1] }, 5) returns “OSU”

def bestTeam(winsLosses, minGames):

bestTeam = ____________

bestPercent = ___________

for team in winsLosses:

wins = ___________________

losses = __________________

gamesPlayed = _________ + _________

check if team played enough games

if _____________ >= minGames:

winPercent = ____________ / gamesPlayed

if _____________ > bestPercent:

bestPercent = ________________

bestTeam = _________________

return _____________

TREE CODEWRITING

Write the function addEvenLeaves(t) that takes in a dictionary representation of a tree (you can assume
it will have at least 1 node) and returns a sum of only the even values held by leaves.

def addEvenLeaves(tree):

base case: empty tree

if ________________:

what should we return?

return ____

recursive case

else:

result = 0

check if we’re at a leaf

if ______________ and ______________:

check if its value is even

if _____________________:

result += _____________________

recursively add the even leaves of the subtrees

result += __

return result

