
Trees
15-110 – Wednesday 10/09

Quizlet 4

2

Announcement

• Exam1 Solution session scheduled for Friday 10/11 5pm on
Zoom

3

Learning Goals

• Identify core parts of trees, including nodes, children, the root,
and leaves

• Use binary trees implemented with dictionaries when reading and
writing code

4

Trees

5

Sometimes we work with data that is hierarchical in nature:
data that occurs at different levels that are connected in some
way.

Hierarchical data shows up in many different contexts.
• File systems in computers – each folder is a rank above the files it

contains
• Company organization schemas – the CEO at the top, interns at the

bottom
• Sports tournament brackets – the overall winner is ranked highest

6

A tree is a hierarchical data structure composed of nodes.

7

3

5 7

1 4

9

8

value 5

node 5's children

node 5's parentNodes (circles) have values (its
data).

A node’s parent is the node one
level above it.

A node’s children are the nodes
one level below it.

Unlike real trees, trees in computer science grow
upside down with the root at the top.

The root is the top-most node.
Every (non-empty) tree has a
root. The root has no parent
node.

The number of levels of a tree is
unlimited.

Nodes that have no children are
called leaves.

88

3

5 7

1 4

9

8

leaves

root

3
levels

A tree is a naturally recursive structure.

Trees are composed of
subtrees. Each node’s children
are also trees.

Our base case can be an empty
tree (or sometimes a leaf).

The recursive case makes the
problem smaller by repeating on
the children, which are also trees.

9

3

5 7

1

root

4 8

subtree
subtree

There are special trees we care about in this class: binary trees.

A binary tree is a tree that can
have at most 2 children per
node. We assign these children
names- left and right, based on
their position.

10

6

3 2

7 98

6's left child 6's right child

Activity: Find the Tree Parts

Given the tree shown to the
right:
• What is the root?
• What are the children of node

X?
• What is the node X's parent?
• What are the leaves?

11

S

T E

LX

HA R

Problem Solving with Trees

12

We have described trees as abstract data structure, but how do
we actually implement it in Python?

14

For many data structures, it is possible to implement them in
different ways and that implementation impacts efficiency of
operations on that data structure.

Python implements lists and dictionaries for us, but not trees.

We will implement trees using recursively nested dictionaries.

Note: While these trees will be mutable because dictionaries are
mutable, in the context of this class we will not be mutating trees.

We implement each node as a dictionary with 3 keys: "contents",
"left", and "right".

• "contents" maps to the value in
the node

• "left" maps to a node (dictionary)
if the node has a left child, or None
if there is no left child.

• "right" maps to a node
(dictionary) if the node has a right
child, or None if there is no right
child.

15

6

t = { "contents" : 6,
 "left" : None
 "right": None

 }

We implement each node as a dictionary with 3 keys: "contents",
"left", and "right".

• "contents" maps to the value in
the node

• "left" maps to a node (dictionary)
if the node has a left child, or None
if there is no left child.

• "right" maps to a node
(dictionary) if the node has a right
child, or None if there is no right
child.

16

6

t = { "contents" : 6,
 "left" : { "contents" : 3,
 "left" : None ,

 "right": None },
 "right": None

 }

3

We implement each node as a dictionary with 3 keys: "contents",
"left", and "right".

• "contents" maps to the value in
the node

• "left" maps to a node (dictionary)
if the node has a left child, or None
if there is no left child.

• "right" maps to a node
(dictionary) if the node has a right
child, or None if there is no right
child.

17

6

t = { "contents" : 6,
 "left" : { "contents" : 3,
 "left" : None ,

 "right": None },
 "right": { "contents" : 2,
 "left" : None ,
 "right": None }

 }

3 2

Note: The empty tree is None.

Activity: Draw the tree

You do: What is the tree that corresponds to this dictionary?

18

t = { "contents" : 6,
 "left" : { "contents" : 3,
 "left" : { "contents" : 8,
 "left" : None,
 "right" : None },
 "right" : { "contents" : 7,
 "left" : None,
 "right" : None } },
 "right" : { "contents" : 2,
 "left" : None,
 "right" : { "contents" : 9,
 "left" : None,
 "right" : None } } }

Simple Example: getChildren(t)

Given a tree, how can we get the
children of the root node?

Access the "left" and "right"
subtrees directly, then access their
"contents", if they exist.

Note that we use two separate
ifs, not an if-elif, because it's
possible for both to be True.

def getChildren(t):

 result = []

 if t["left"] != None:

 leftT = t["left"]

 result.append(leftT["contents"])

 if t["right"] != None:

 rightT = t["right"]

 result.append(rightT["contents"])

 return result

19

Because this is a recursive data structure, we will usually need
to use recursion to do operations on trees.

Base case: When the tree is empty. (t == None).

Recursive case: Call the function recursively on the left child and
then call again on the right child. Combine those results in some way
with the node's value.

21

Alternative approach: Base case is when the node is a leaf. Call the
function recursively on the left child and the right child, if they are
not None, but this code is generally more complex.

Example: countNodes

Algorithm: Count the number
of nodes in the tree.

Recursive Case: Count is 1 for
the root node. Add the number
of nodes in the left subtree.
Add the number of nodes in
the right subtree.

Base Case: Empty tree has 0
nodes.

22

def countNodes(t):
 if t == None:
 return 0
 else:
 # root node
 count = 1
 # left and right subtrees
 count += countNodes(t["left"])
 count += countNodes(t["right"])
 return count

Example: sumNodes(t)

Algorithm: Get the sum of all the
node values.

Recursive Case: Add the value
of the root node. Add the sum of
the nodes in the left subtree. Add
the sum of the nodes in the right
subtree.

Base Case: Empty tree has a
sum of 0.

def sumNodes(t):

 if t == None:

 return 0

 else:

 # add contents of root node

 total = t["contents"]

 # left and right subtrees

 total += sumNodes(t["left"])

 total += sumNodes(t["right"])

 return total

24

Activity: listValues

You do: write the function listValues(t), which takes a tree
and returns a list of all the values in the tree. The values can be
in any order, but try to put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you
need to consider the type of the values you'll return.

Given our example tree (shown below), the
function returns: [8, 3, 7, 6, 2, 9].

You can test your code by copying the
example tree's implementation on Slide 18.

25

6

3 2

7 98

Learning Goals

• Identify core parts of trees, including nodes, children, the root,
and leaves

• Use binary trees implemented with dictionaries when reading and
writing code

26

