Trees

15-110 — Wednesday 10/09

Quizlet 4

Announcement

e Exam1 Solution session scheduled for Friday 10/11 S5pm on
oom

Learning Goals

e |dentify core parts of trees, including nodes, children, the root,
and leaves

e Use binary trees implemented with dictionaries when reading and
writing code

Trees

Sometimes we work with data that is hierarchical in nature:
data that occurs at different levels that are connected in some
way.

Hierarchical data shows up in many different contexts.
¢ File systems in computers — each folder is a rank above the files it
contains

e Company organization schemas - the CEO at the top, interns at the
bottom

e Sports tournament brackets — the overall winner is ranked highest

WOMEN'S WORLD CUP
e

Da
=

ssssss

zzzzzzz

A tree is a hierarchical data structure composed of nodes.

node 5's parent

A node’s parent is the node one
level above it. e ° 0

Nodes (circles) have values (its value 5
data).

A node’s children are the nodes
one level below it.

node 5's children

Unlike real trees, trees in computer science grow
upside down with the root at the top.

root
The root is the top-most node.
Every (non-empty) tree has a
root. The root has no parent e

The number of levels of a tree is
unlimited. e Q °

Nodes that have no children are
called leaves.

leaves

A tree is a naturally recursive structure.

Trees are composed of
subtrees. Each node’s children
are also trees.

Our base case can be an empty
tree (or sometimes a leaf).

The recursive case makes the
problem smaller by repeating on

the children, which are also trees.

root

subtree

L
o

subtree

There are special trees we care about in this class: binary trees.

6's left child 6's right child
A binary tree is a tree that can G
have at most 2 children per
node. We assign these children e Q
names- left and right, based on

their position. ° 0 a

Activity: Find the Tree Parts

Given the tree shown to the

right:
e \What is the root? °

e \What are the children of node G G
X?

e \What is the node X's parent? ° 0

e \What are the leaves”? ° G G

Problem Solving with Trees

We have described trees as abstract data structure, but how do
we actually implement it in Python?

For many data structures, it is possible to implement them in
different ways and that implementation impacts efficiency of
operations on that data structure.

Python implements lists and dictionaries for us, but not trees.
We will implement trees using recursively nested dictionaries.

Note: While these trees will be mutable because dictionaries are
mutable, in the context of this class we will not be mutating trees.

We implement each node as a dictionary with 3 keys: "contents”,
‘left”,and "right".

e "contents"” maps to the value in

the node @

e "left" maps to a node (dictionary)
If the node has a left child, or None
If there is no left child.

e " t = "contents" : 6,
* "right" maps to a node { "Teft" : None

(dictionary) if the node has a right "right": None
child, or None if there is no right }
child.

15

We implement each node as a dictionary with 3 keys: "contents”,

"left"”,and "right".

e "contents"” maps to the value in
the node

e "left" maps to a node (dictionary)
If the node has a left child, or None
If there is no left child.

e "right” maps to a node
(dictionary) if the node has a right
child, or None if there is no right
child.

t = { "contents" : 6,

"left" : { "contents" : 3,
"left" : None ,
"right": None },

"right": None

¥

16

We implement each node as a dictionary with 3 keys: "contents”,
"left”,and "right".

e "contents"” maps to the value in

the node 6

e "left" maps to a node (dictionary) ° a

If the node has a left child, or None
If there is no left child.

t = { "contents" : 6,

* "right” maps to a node "left" : { "contents" : 3,

(dictionary) if the node has a right "left" : None ,
. . . . "right": None },

Chll|d, or None if there is no right ‘right™: { "contents” : 2.

child. "left" : None ,

"right": None }

Note: The empty tree is None.

17

Activity: Draw the tree

You do: What is the tree that corresponds to this dictionary?

t = { "contents" : 6,

"left" : { "contents" : 3,
"left" : { "contents" : 8,
"left" : None,

"right" : None },
"right" : { "contents" : 7,
"left" : None,
"right" : None } },
"right" : { "contents" : 2,

"left" : None,
"right" : { "contents" : 9,
"left"™ : None,

"right" : None } } }

Simple Example: getChildren(t)

Given a tree, how can we get the

children of the root node? def getChildren(t):

result = []
if t["left"] != None:
Access the "left" and "right"” leftT = t["left"]

subtrees directly, then access their

" s . result.append(leftT["contents”
contents", if they exist. ppend([1)

if t["right"] != None:

rightT = t["right"]
Note that we use two separate result.append(rightT["contents"])
ifs, not an if-elif, because it's

| t 1t
possible for both to be True. return resu

19

Because this Is a recursive data structure, we will usually need
to use recursion to do operations on trees.

Base case: When the tree is empty. (t == None).

Recursive case: Call the function recursively on the left child and
then call again on the right child. Combine those results in some way

with the node's value.

Alternative approach: Base case is when the node is a leaf. Call the
function recursively on the left child and the right child, if they are
not None, but this code is generally more complex.

Example: countNodes

Algorithm: Count the number def countNodes(t):

of nodes in the tree. if t == None:
return ©

Recursive Case: Count is 1 for else:

the root node. Add the number # root node

of nodes in the left subtree. count = 1

Add the number of nodes in

: # left and right subtrees
the right subtree. °

count += countNodes(t["left"])

count += countNodes(t["right"])
Base Case: Empty tree has O return count
nodes.

22

Example: sumNodes(t)

Algorithm: Get the sum of all the def sumNodes(t):
node values. if t = None-:

] return 0
Recursive Case: Add the value

of the root node. Add the sum of €'°¢

the nodes in the left subtree. Add # add contents of root node
thebtsum of the nodes in the right total = t["contents"]
subtree.

left and right subtrees

_t t l — N d _t ||1 _F_tn
Base Case: Empty tree has a otal += sumNodes(t[-])
sum of O. total += sumNodes(t["right"])

return total

24

Activity: 1istValues

You do: write the function 1istValues(t), which takes a tree
and returns a list of all the values in the tree. The values can be
In any order, but try to put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you
need to consider the type of the values you'll return.

Given our example tree (shown below%,]the a

function returns: [8, 3, 7, 6, 2 e a

You can test your code by copying the
example treeys Implemen ationyongSIide 18. ° 0 °

Learning Goals

e |dentify core parts of trees, including nodes, children, the root,
and leaves

e Use binary trees implemented with dictionaries when reading and
writing code

