Runtime and Big-O
Notation

15-110 — Monday 10/07

Announcements

e Hw3 was due today
* No Check4 due to fall break. Be ready to start on HW4 right after break!

e Exam1 grades have been released! Median = 86.5; well done!

e Fxam reflection due Friday at 11:59pm

e Exam1 Review Session on Zoom: 5pm on Friday

[E=————————]

19.5 86.5 99.0 83.67 -~ 2

https://docs.google.com/forms/d/e/1FAIpQLScMl2TIxj8SvWcVN6U8EGWJRVtkrCjTpepE1vOMt5DoYAqdbA/viewform?usp=sf_link
https://cmu.zoom.us/j/93645567117?pwd=FCDqxrt8BamQ2HRMdeBFHweUe3I5rl.1

Learning Goals

e |dentify the worst case and best case inputs of functions

e Compare the function families that characterize different
functions

e Calculate a specific function or algorithm's efficiency using Big-O
notation

A major goal of computer scientists is not just to make
algorithms that work, but algorithms that work efficiently.

Computers are fast, but they can still take time to do complex
actions. Faster algorithms can save lives, increase company profits,
and reduce user frustration.

Resources we care about:

- Running time: how long does it take for the algorithm to run?
- Space: how much memory does the algorithm use?

- Energy: how much energy does running it consume?

- Connectivity: how many network connection does it make?

Search Algorithm Efficiency

How can we compare the efficiency of linear and binary search?

To compare running time in an abstract way, we count the number of
actions/steps it takes for the algorithm to run based on the size of

the input.

Which steps are we counting? Simple operations on the input.
For searching, this is comparisons between number we are trying to
find and the list we are searching.

What is the size of the input? The number of items in the input.
For searching, this is the list we are searching.

How many comparisons for linear search vs. binary search to
find 667

Linear search: 9 comparisons

12 |25 (32 |37 (41 |48 |58 |60 |66 |73 |74 |79 |83 |91 95

Binary search: 4 comparisons

1st 4th 3rd 2nd
12 |25 (32 |37 (41 (48 |58 (60 |66 |73 (74 |79 |83 (91 |95

This is for a specific input.
How do we compare running times across inputs?

Running Time: Best Case, Worst Case

We can compare algorithms based on their best case and
worst case running times.

Best case input:

An input of size n that results in the algorithm taking the least steps
possible.

Worst case input:

An input of size n that results in the algorithm taking the most steps
possible.

Linear search: Best and worst case input

What is the best case for linear search?
Answer: A list where the item we search for is in the first position

What is the worst case for linear search?
Answer: A list where the item we search for is not in the list.

Binary search: Best and worst case input

You do: what's the best case input and worst case input for binary
search if we are counting comparisons?

Given the best case and worst case input (size n), we can
determine how many actions it takes to run the algorithm on
those inputs.

How many actions do we perform in the best case?
Linear search: 1 comparison
Binary search: 1 comparison

How many actions do we perform in the worst case?
Lineary search: n comparisons (we have to check every element)
Binary search: ??

How many actions do we perform in the worse case in
binary search?

List size Number of
recursive calls
1 1
22-1 =3 2
231 =7 3
24-1 =15 4
2°-1 = 31 5
oK -1 K
n log,(n)

Each recursive call does 1
comparison, so how many
recursive calls?

When the input length doubles for
linear search, it does twice as
many comparisons.

But, when the input length
doubles for binary search, it
does just one more comparison!

Function Families

When comparing algorithms, we care about how the number of
steps grows with the size of the input.

In math, a function family is a set of equations that all grow at the
same rate as their inputs grow. For example, an equation might grow
linearly or quadratically.

When determining which function family represents the actions taken
by an algorithm, we say that n is the size of the input. For a list,
that's the number of elements; for a string, the number of characters.

Common Function Families

Exponential (2") Quadratic (n?)
!

Number of
Operations

Linear (n)

Logarithmic (log n)

Constant

n (amount of data)

17

Function Families and Constants

=
y = 1001log(n) + 20
y=4n+ 20

y=2n+ 300

=L ,2
v=_1p"

SR

K«

logarithmic

Notice that as n grows,
the function family
becomes much more
important than the
constants, and
functions with the
same function family
behave similarly.

18

Alternate Visualization

Here's another way to think about the function families. Consider what happens
when you double the size of the input.

Constant

Logarithmic

Linear

Quadratic

Exponential

double input,
no change in actions

double input,
+1 action

double input,
double actions

double input,
quadruple actions

double input, many
many more actions!

Input Size

Actions Taken

\J

Yy Yy vYyyvYy YVYy Yy

19

Big-O Notation

Big-O Notation: When determining an algorithm’s running time,
we denote the function family and ignore constant factors.

When we determine a program or algorithm runtime, we ignore
constant factors and smaller terms. All that matters is the function
family, the dominant term (highest power of n). That is the idea of

Big-O notation.

H(n) Big-O Unless specified otherwise, the
n O(n) Big-O of an algorithm refers to its
32n + 23 O(n) runtime in the worst case (computer
502 + 6N - 8 O(n?) scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS
classes, you'll learn more about how Big-O actually works.

Big-O for Linear Search vs. Binary Search

Linear search:

Double the input, double
the comparisons:

O(n)

Binary search:

Double the input, +1
comparisons:

O(log n)

Binary search is incredibly fast. Linear search is much slower
iIn the worst case!

22

Calculating Big-O Runtimes

If there are statements that run sequentially, the runtime for
each statement is added to the total runtime.

def example(x): # n = X
X =X+ 5 # 0(1)
y = X + 2 # 0(1)
print(x, y) # 0(1)
Total: 0(1)

Note: If a step’s runtime does not depend on the size of the input,
it is O(1)!

25

Conditionals run sequentially.

def firstOrlLast(s): # n = len(s)
if len(s) % 2 == 0: # 0(1)
return s[@] # 0(1)
else: # 0(1)
return s[len(s)-1] # 0(1)
Total: 0(1)

26

If there are functions, need to add that function’s runtime to
the overall runtime. (It may not be O(1)!)

def printContains(lst, x): # n = len(lst)
result = linearSearch(lst, x) # 0(n)
print(x, "in 1lst?", result) # 0(1)

Total: 0O(n)

27

Loops repeat actions, so multiply the runtime of the loop
body by the number of times the loop repeats”.

def addThemAll(1lst): # n
result = @ # 0(1)

len(1lst)

for 1 in range(len(lst)): # n repetitions
result = result + 1st[i] # 0(1)

return result # 0(1)
Total: O(n)

* caveat: multiplying only works if
the work done in each loop is
constant each iteration

28

Some built-in Python functions and operations have
non-constant runtimes!

def countAll(lst): # n = len(lst)
for 1 in range(len(lst)): # n repetitions
count = lIst.count(i) # O(n)
print(i, "occurs", count, "times") # 0(1)
Total: O(n"2)

We will usually let you know on assignments and exams when a
built-in method/functions or operation is not constant time.
Question: What is the runtime of the in operator? x in 1st

29

Common Big-O Runtimes

O(1) is Constant Time

def swap(lst, i, j):

tmp = 1st[i]
1st[i] = 1st[j]
1st[j] = tmp

Does the runtime of this algorithm
depend on the number of items in
the list?

Answer: No.

This algorithm is constant time or
O(1); its time does not change with
the size of the input.

O(log n) is Logarithmic Time

def countDigits(n):

count = 0
while n > ©:
n=n// 10

count = count + 1
return count

Every time you increase n by a factor of
10, you run the loop one more time. All
the operations in the loop are constant
time. Similar to binary search, the
algorithm is logarithmic time, or O(log
n).

Multiplying input by 10, adds one more
iteration to the loop.

Even though this is log, ,(n), we don't
include the base in the Big-O notation
because a change of base is just a
multiplicative factor. .

O(n) is Linear Time

def countdown(n):

for 1 in range(n, -1, -5):

print(i)

This code will loop n/5 times
overall. If we double the size of n,
how many more times do we go
through the loop?

Answer: We double the number of
times through the loop. That is
linear time, or O(n), as it is
proportional to the size of n.
Stepping by 5 doesn't change the
function family.

O(n?) is Quadratic Time

def multiplicationTable(n):
for 1 in range(1, n+l):
for j in range(1l, n+l):

print(iJ "*") jJ -) i*j)

This seems tricky at first, but note that every iteration of the
outer loop will do all the work of the inner loop.

The inner loop does n total iterations (with O(1) work in its body).
This is repeated n times by the outer loop. Therefore, the entire
runtime is O(n?).

34

O(2") is Exponential Time This is Towers of Hanoi.

Every time we add 1
disc we double the

def move(start, tmp, end, num): # n = num pumber of moves.

if num ==

return 1

else:
moves
moves
moves
moves

That's exponential
time, or O(2").

0 o2 = 0@" + O(2")
moves + move(start, end, tmp, num - 1)
moves + move(start, tmp, end, 1)

moves + move(tmp, start, end, num - 1)

return moves

35

For Recursion, Look at the Number of Calls

Is all recursion exponential? Not necessarily! It depends on the number of recursive
calls the function will need to make.

def countdown(n):
if n <= O:
print("Finished!")
else:
print(n)
countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be
made. The function is O(n).

Activity: Calculate the Big-O of Code
Activity: predict the Big-O runtime of the following piece of code.

def sumEvens(lst): # n = len(lst)
result = 0
for 1 in range(len(lst)):
if 1st[i] % 2 ==
result = result + 1lst[i]
return result

37

[if time] Complex Big-O Example

Let's look at a more complex example together:

1: def example(lst): # n is len(lst)

2 result = []

3: for 1 in range(@, len(lst), 2):

4. if 1st[i] != 1lst[i+1]:

5. average = (1st[i] + 1st[i+1]) / 2
6 if average in lst:

7 result.append(average)

3 return count

Runtime: constant + n/2 * (constant + constant + n + constant) =

constant + constant * (n?) + constant * n = O(n?)

Line 3 iterates n/2 times — we
should multiply that by the
work done by the loop body.

Line 4 is a conditional with a
constant check — add it to the
rest of the loop body.

Line 6 is a conditional with a
O(n) check —add n to the rest
of the body.

Lines 2,5, 7, and 8 don't
depend on the size of the
input; they're constant
actions.

38

Additional Learning: High-Speed Trading

Want more examples of how efficiency impacts real life? Check out

this podcast episode on high-speed computer trading (where
milliseconds make the difference between profit and loss):

https://radiolab.org/episodes/267124-speed

40

https://radiolab.org/episodes/267124-speed

Learning Goals

e |dentify the worst case and best case inputs of functions

e Compare the function families that characterize different
functions

e Calculate a specific function or algorithm's efficiency using Big-O
notation

