
Runtime and Big-O  
Notation

15-110 – Monday 10/07



Announcements
• Hw3 was due today

• No Check4 due to fall break. Be ready to start on HW4 right after break!

• Exam1 grades have been released! Median = 86.5; well done!

• Exam reflection due Friday at 11:59pm 

• Exam1 Review Session on Zoom: 5pm on Friday 
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https://docs.google.com/forms/d/e/1FAIpQLScMl2TIxj8SvWcVN6U8EGWJRVtkrCjTpepE1vOMt5DoYAqdbA/viewform?usp=sf_link
https://cmu.zoom.us/j/93645567117?pwd=FCDqxrt8BamQ2HRMdeBFHweUe3I5rl.1


Learning Goals

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different 
functions

• Calculate a specific function or algorithm's efficiency using Big-O 
notation

3



A major goal of computer scientists is not just to make 
algorithms that work, but algorithms that work efficiently.

Computers are fast, but they can still take time to do complex 
actions. Faster algorithms can save lives, increase company profits, 
and reduce user frustration.

Resources we care about:
- Running time: how long does it take for the algorithm to run?
- Space: how much memory does the algorithm use?
- Energy: how much energy does running it consume?
- Connectivity: how many network connection does it make?
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Search Algorithm Efficiency
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How can we compare the efficiency of linear and binary search?

To compare running time in an abstract way, we count the number of 
actions/steps it takes for the algorithm to run based on the size of 
the input. 

Which steps are we counting? Simple operations on the input. 
For searching, this is comparisons between number we are trying to 
find and the list we are searching. 

What is the size of the input? The number of items in the input.
For searching, this is the list we are searching.
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How many comparisons for linear search vs. binary search to 
find 66? 

Linear search: 9 comparisons

Binary search: 4 comparisons
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1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

This is for a specific input. 
How do we compare running times across inputs?



Running Time: Best Case, Worst Case
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We can compare algorithms based on their best case and 
worst case running times.  
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Best case input: 
An input of size n that results in the algorithm taking the least steps 
possible.

Worst case input:
An input of size n that results in the algorithm taking the most steps 
possible.



Linear search: Best and worst case input

What is the best case for linear search?
Answer: A list where the item we search for is in the first position

What is the worst case for linear search?
Answer: A list where the item we search for is not in the list.
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Binary search: Best and worst case input

You do: what's the best case input and worst case input for binary 
search if we are counting comparisons?
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Given the best case and worst case input (size n), we can 
determine how many actions it takes to run the algorithm on 
those inputs. 

How many actions do we perform in the best case?
Linear search: 1 comparison
Binary search: 1 comparison

How many actions do we perform in the worst case?
Lineary search: n comparisons (we have to check every element)
Binary search: ??
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How many actions do we perform in the worse case in 
binary search?    

Each recursive call does 1 
comparison, so how many 
recursive calls?

When the input length doubles for 
linear search, it does twice as 
many comparisons.

But, when the input length 
doubles for binary search, it 
does just one more comparison!
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List size Number of 
recursive calls

1 1
22-1 = 3 2
23-1 = 7 3

24-1 = 15 4
25-1 = 31 5

2k -1 k
n log2(n)



Function Families
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When comparing algorithms, we care about how the number of 
steps grows with the size of the input. 

In math, a function family is a set of equations that all grow at the 
same rate as their inputs grow. For example, an equation might grow 
linearly or quadratically.

When determining which function family represents the actions taken 
by an algorithm, we say that n is the size of the input. For a list, 
that's the number of elements; for a string, the number of characters.
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Common Function Families
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n (amount of data)

Number of
Operations

Exponential (2n)

Constant

Logarithmic (log n)

Quadratic (n2)

Linear (n)



Function Families and Constants
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Notice that as n grows, 
the function family 
becomes much more 
important than the 
constants, and 
functions with the 
same function family 
behave similarly.logarithmic
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Alternate Visualization

Here's another way to think about the function families. Consider what happens 
when you double the size of the input.
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Constant       double input, 
                          no change in actions

Input Size Actions Taken

Logarithmic double input,
             +1 action

Linear        double input,
             double actions

Quadratic       double input, 
             quadruple actions

Exponential double input, many 
             many more actions!



Big-O Notation
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Big-O Notation: When determining an algorithm’s running time, 
we denote the function family and ignore constant factors. 
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When we determine a program or algorithm runtime, we ignore 
constant factors and smaller terms. All that matters is the function 
family, the dominant term (highest power of n). That is the idea of 
Big-O notation.

f(n) Big-O
n O(n)

32n + 23 O(n)
5n2 + 6n - 8 O(n2)

Unless specified otherwise, the   
Big-O of an algorithm refers to its 
runtime in the worst case (computer 
scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS 
classes, you'll learn more about how Big-O actually works.



Big-O for Linear Search vs. Binary Search

Linear search: 
Double the input, double 
the comparisons:
O(n)

Binary search: 
Double the input, +1 
comparisons:
O(log n)
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lin
ear

binary

Binary search is incredibly fast. Linear search is much slower 
in the worst case!



Calculating Big-O Runtimes
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If there are statements that run sequentially, the runtime for 
each statement is added to the total runtime.

def example(x): # n = x

    x = x + 5 # O(1)

    y = x + 2 # O(1)

    print(x, y) # O(1)

# Total: O(1)
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Note:  If a step’s runtime does not depend on the size of the input, 
it is O(1)!



Conditionals run sequentially.

def firstOrLast(s): # n = len(s)

    if len(s) % 2 == 0: # O(1)

        return s[0] # O(1)

    else: # O(1)

        return s[len(s)-1] # O(1)

# Total: O(1)
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If there are functions, need to add that function’s runtime to 
the overall runtime. (It may not be O(1)!)

def printContains(lst, x): # n = len(lst)

    result = linearSearch(lst, x) # O(n)

    print(x, "in lst?", result) # O(1)

# Total: O(n)
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Loops repeat actions, so multiply the runtime of the loop 
body by the number of times the loop repeats*. 

def addThemAll(lst): # n = len(lst)

    result = 0 # O(1)

    for i in range(len(lst)): # n repetitions

        result = result + lst[i] # O(1)

    return result # O(1)

# Total: O(n)
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* caveat: multiplying only works if 
the work done in each loop is 
constant each iteration



Some built-in Python functions and operations have 
non-constant runtimes!  

def countAll(lst): # n = len(lst)

    for i in range(len(lst)): # n repetitions

        count = lst.count(i) # O(n)

        print(i, "occurs", count, "times") # O(1)

# Total: O(n^2)
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We will usually let you know on assignments and exams when a 
built-in method/functions or operation is not constant time. 
Question: What is the runtime of the in operator? x in lst



Common Big-O Runtimes
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O(1) is Constant Time

def swap(lst, i, j): # n = len(lst)

    tmp = lst[i]

    lst[i] = lst[j]

    lst[j] = tmp
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Does the runtime of this algorithm 
depend on the number of items in 
the list?
   Answer: No.

This algorithm is constant time or 
O(1); its time does not change with 
the size of the input.



O(log n) is Logarithmic Time

def countDigits(n): # n = n

    count = 0

    while n > 0:

        n = n // 10

        count = count + 1

    return count

32

Every time you increase n by a factor of 
10, you run the loop one more time. All 
the operations in the loop are constant 
time. Similar to binary search, the 
algorithm is logarithmic time, or O(log 
n).

Multiplying input by 10, adds one more 
iteration to the loop.

Even though this is log10(n), we don't 
include the base in the Big-O notation 
because a change of base is just a 
multiplicative factor.



O(n) is Linear Time

def countdown(n): # n = n

    for i in range(n, -1, -5):

        print(i)
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This code will loop n/5 times 
overall. If we double the size of n, 
how many more times do we go 
through the loop?

Answer: We double the number of 
times through the loop. That is 
linear time, or O(n), as it is 
proportional to the size of n. 
Stepping by 5 doesn't change the 
function family.



O(n2) is Quadratic Time

def multiplicationTable(n): # n = n
    for i in range(1, n+1):
        for j in range(1, n+1):
            print(i, "*", j, "=", i*j)

This seems tricky at first, but note that every iteration of the 
outer loop will do all the work of the inner loop.

The inner loop does n total iterations (with O(1) work in its body). 
This is repeated n times by the outer loop. Therefore, the entire 
runtime is O(n2).
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O(2n) is Exponential Time

def move(start, tmp, end, num): # n = num
    if num == 1:
        return 1
    else:
        moves = 0
        moves = moves + move(start, end, tmp, num - 1)
        moves = moves + move(start, tmp, end, 1)
        moves = moves + move(tmp, start, end, num - 1)
        return moves

35

This is Towers of Hanoi. 
Every time we add 1 
disc we double the 
number of moves. 
That's exponential 
time, or O(2n).

O(2n+1) = O(2n) + O(2n)



For Recursion, Look at the Number of Calls

Is all recursion exponential? Not necessarily! It depends on the number of recursive 
calls the function will need to make.

def countdown(n): # n = n

    if n <= 0:

        print("Finished!")

    else:

        print(n)

        countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on 
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be 
made. The function is O(n).
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Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code. 

def sumEvens(lst): # n = len(lst)
    result = 0
    for i in range(len(lst)):
        if lst[i] % 2 == 0:
            result = result + lst[i]
    return result
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[if time] Complex Big-O Example

Let's look at a more complex example together:

1: def example(lst): # n is len(lst)
2:     result = []
3:     for i in range(0, len(lst), 2):
4:          if lst[i] != lst[i+1]:
5:             average = (lst[i] + lst[i+1]) / 2
6:             if average in lst:
7:                 result.append(average)
8:     return count
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Line 3 iterates n/2 times – we 
should multiply that by the 
work done by the loop body.

Line 4 is a conditional with a 
constant check – add it to the 
rest of the loop body.

Line 6 is a conditional with a 
O(n) check – add n to the rest 
of the body.

Lines 2, 5, 7, and 8 don't 
depend on the size of the 
input; they're constant 
actions.Runtime: constant + n/2 * (constant + constant + n + constant) =

constant + constant * (n2) + constant * n = O(n2)



Additional Learning: High-Speed Trading

Want more examples of how efficiency impacts real life? Check out 
this podcast episode on high-speed computer trading (where 
milliseconds make the difference between profit and loss):

https://radiolab.org/episodes/267124-speed 
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https://radiolab.org/episodes/267124-speed


Learning Goals

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different 
functions

• Calculate a specific function or algorithm's efficiency using Big-O 
notation
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