Dictionaries

15-110 - Friday 10/04

Announcements

» Semester drop deadline is Monday
* Quizlet 3 grades released
* Hw3 due on Monday

¢ Sign up for code reviews!

¢ Sign-ups close today at 11:59pm

124
44 43
34
. ___
0 1 2 3 4 5 6 7 8 9 10
Minimum Median Maximum

0.0 7.25 10.0 6.72

https://www.cs.cmu.edu/~110/hw2-code-review.html

Learning Goals

* |dentify the keys and values in a dictionary

* Use dictionaries when writing and reading code that uses
pairs of data

» Use for loops to iterate over the parts of an iterable value

We can improve the efficiency of our algorithms by changing the
data structure we use to store data.

Lists are nice when we need to store data in sequential order and

want to be able to quickly lookup a piece of data stored at a specific
iIndex.

What other data structures can we use?

Dictionaries

Dictionaries store data in pairs by mapping keys to values.

We use dictionary-like data in the real world all the time!

Examples include phonebooks (which map names to phone
numbers), the index of a book (which maps terms to page numbers),
or the CMU directory (which maps andrewIDs to information about

people).

Directory Search Results

Enter first, last or full name, Andrew userID or email address as it appears in the directory.
INDEX

farnam Search

APPETIZERS APPLI

4 A e S Use Advanced Search or login for additional search options or if you are unsure of the directory name.

(See "BOUREG")
Qww/Spreads BEANS

4

Baba Ghannou) (Minassian) 4 Chickpea Pial 72 i

S pyion et & 7 Farnam Jahanian (Faculty)

Eegra 5 Falatel! 81

by b Rt kN o L Display Name: Farnam Jahanian

Hummus (Hancock) 6 Garbanzo Bean Salad with Email: president@cmu.edu

Hummus (Henesian) 7 Tahine 48 Andrew UserID: farnam

Saimon Supreme Spread 4 -3

Spinach Dip (7 1 (Hancock)] i

Spinach Dip (Baghdasarian) 7 Hummus (Henesian) 7 Conla ct Information

Yogurt Spread 2 With Ginger ____. 82
Meat. Miscel On Campus: Wh 610

Aram Roll-Up Sandwich. 8 Boan Plaki 67 Phone: +1 412 268 2200

Basterma 9 BeanSaind 7

Hawaian Meatbals Georgi _—

eyl % 0 Oy ok D S S Departmental Affiliations

Meatbails (for cocktail time) 10 sian) 49

Peggy's Cocktall Franks. n Green Bean Salad Job Title According to HR:
Miscellaneous Appetizers (Hirschield) 4 President

Artichoke French Bread 25 (Green Beans Groek Style 81

Sufted M Lima Bean D Piaf ’ s s
Pickles Loobia 3 Department with which this person is affiliated:

(See “PICKLES") String Bean Stew o Computer Science Department

o iow, White Bean Piaki 67 ECE: Electrical & Computer Engineering

BEVERAGE Heinz General & Administrative
'S

Kharpertzie Yalanchi 15 Arlene's Punch 18 President's Office

Yalanchi Dolma (Amerian) 16 Armenian Cofiee b

Yatanchi Doima (Minasian) 16 Hot Spiced Tea 19 i

Yolrchi Bors o 1 ot Names by Which This Person is Known

() 17 Zingerade 1
Yalanchi Sarma " Farnam Jahanian
(Henesian, R) 17 BOUREG
Yalanchi Sarma (Yeram) 18 Bird's Nest Boureg 1

Cheese Boureg (Kapjian) 1

We use curly brackets to create dictionaries in Python.

create an empty dictionary

d={}

make a dictionary mapping strings to integers
d = { "apples” : 3, "pears” : 5, "bananas" : 4 }

Each element of a dictionary is a key-value pair separated by
a colon.

Keys in dictionaries are unordered, unique, and must be
immutable. Values can be any data type.

keys are strings, values are integers
d = { "apples” : 3, "pears" : 5, "bananas": 4}

"bananas" 4
"apples" 3

"pears" 5

Keys in dictionaries are unordered, unique, and must be
immutable. Values can be any data type.

keys are strings, values are integers

d = { "apples” : 3, "pears” : 5 ,"bananas”: 4 }

keys are strings, values are strings
d = {"Pittsburgh": "PA","San Diego": "CA"}

keys are integers, values are floats
d = {1: 3.5, 4: 7.3, 10: 12.12}

We use indexing to get values in a dictionary where the index is
the key (and not a number).

d = { "apples": 3, "pears": 4, "bananas": 5}

d["apples”] # the value paired with this key
len(d) # number of key-value pairs

You get a runtime error if you try to access a key not in the
dictionary.

d["ice cream"] # KeyError
d[4] # KeyError

Dictionaries are mutable.

We can update values using index assignment (similar to lists) and
we can add new key-value pairs.

d = { "apples": 3, "pears": 4, "bananas": 5 }
d["grapes"] = 7 # adds a new key-value pair
d["apples"] = d["apples"] + 1 # updates the key-value pair

To remove a key-value pair, use pop with the key as the argument.

d.pop("pears") # mutating remove

We can search for a key in a dictionary using the in operator

d = { "apples” : 3, "pears" : 4 }
"apples"” in d # True
"kiwis" in d # False

We cannot use in to look up the dictionary's values. We need to
loop over the keys and check each key's value instead!

Activity: Trace The Code

In the following code, the keys represent student IDs and the values
represent student names. After running the code, what key-value
pairs will the dictionary hold?

d = { 26: "Chen", 23: "Patrick" }
d[88] = "Rosa"

d[23] = "Pat"

d[51] = d[23]

i% "éhen" in d:
d.pop("Chen")

Activity: Predict the Printed Values

d = { 26: "Chen", 23: "Patrick", 26: “Rosa” }
print(d[26])

[1]: "Chen”
[2]: "Rosa”
[3]: "ChenRosa"

[4]: This will crash with an error
[5]: | don’t know

Looping over lterables

An iterable is any data type that is a sequence we can loop
over using a for loop in Python.

Strings are a sequence of characters where each character is at a
specific index.

Lists are a sequence of values where each element is at a specific
index.

Dictionaries are a sequence of key-value pairs where each value
has a specific key.

A dictionary is unordered, so we cannot loop over it with range.
d = { "apples": 3, "pears": 4, "bananas": 5 }

for 1 in range(len(d)):
print(d[i]) # Key Error

We can directly loop over iterables using a for loop without

using range!

for <i1temVariable> in <iterableValue>:

<i1temActionBody>

Ilterating over string characters:
s = "this is the best class”
for char in s:

print(char.upper())

Ilterating over list elements:
L = ["Hello", "World"]
for word in L:

print(word + "I")

We can directly for loop over dictionary keys and then index
into the dictionary to get the value.

d = { "apples” : 5, "beets" : 2, "lemons" : 1 }

for k in d:
orint("Key:", k)
orint("Value:", d[k])

For dictionaries, you always have to use a For-Iterable loop
but for strings and lists you can also use a For-Range loop.

Both of these sum the values in 1st:

result = ©
for item in 1lst:
result = result + item

or

result = 0
for 1 in range(len(1lst)):
result = result + 1st[i]

Activity: printItems(foodCounts)

You do: write the function printItems(foodCounts) that takes a
dictionary mapping foods (strings) to counts (integers), loops over

the key-value pairs, and print the number of each individual food
type included in the input.

For example, if d = { "apples” : 5, "beets" : 2, "lemons" : 1 },
the function might print

5 apples
2 beets
1 lemons

25

Problem Solving with Dictionaries

Example: We often need to loop over the keys and doing
something with each key-value pair.

Algorithm: Sum all the values in a dictionary.

def addValues(d):
total = ©

for key in d:
total = total + d[key]

return total

Example: We often need to build/create a new dictionary.

Algorithm: Create an alphabet dictionary for a list of strings.

def makeAlphabetDict(words):
d =11}

for word in words: When building a dictionary,
letter = word[0]
if letter not in d- you usually need to check
d[letter] = [word] if a key Is already in the
else: dictionary.

d[letter].append(word)
return d

We can nest dictionaries by mapping each key to another
dictionary.

Algorithm: Create a multiplication table.

def createMultDict(n):

d =1}
for x in range(1l, n+l):
innerD = { }

for y in range(1l, n+l):
innerD[y] = X * vy
d[x] = innerD
return d

[if time] Activity: hasShortKeys(d, 1limit)

You do: write a program that takes a dictionary mapping
strings to numbers and a limit (a number) and returns True if all
the keys are at most the limit in length, and False otherwise.

For example, hasShortKeys({ "abc" : 2, "de" : 5}, 3)
would return True, but

hasShortKeys({ "abc" : 2, "defgh" : 2}, 4) would
return False.

31

Learning Goals

* |dentify the keys and values in a dictionary

* Use dictionaries when writing and reading code that uses
pairs of data

» Use for loops to iterate over the parts of an iterable value

Advanced Examples

Bonus slides

Coding with Dictionaries — Track Information

We often use dictionaries when
problem-solving. One common use
of dictionaries is to track
information about a list of values.

For example, given a 2D list of
students and their colleges (a list of
two-element lists of "student”
and "college”), how many
students are in each college?

We will create a dictionary with
colleges as the keys and the student
counts as the values.

def countByCollege(studentLst):
collegeDict = { }
for pair in studentLst:
name = pair[0]
college = pair[1]
if college not in collegeDict:
collegeDict[college] = ©
collegeDict[college] += 1

return collegeDict

countByCollege([["erhurst" ,"CIT"],
["neerajsa","sCcs"], ["cosorio","DC"],
["dtoussai", "CIT"]])

34

Coding with Dictionaries — Find Most Common

We also use dictionaries to find
the most common element of a
list, by mapping elements to
counts.

For example, given the dictionary
returned by the previous function,
which college is the most
popular?

def mostPopularCollege(collegeDict):

best = None
-1

for college in collegeDict:

bestScore

if collegeDict[college] > bestScore:
bestScore = collegeDict[college]
best = college
return best

35

