Exam 1 Review

15-110 — Monday 09/30

Announcements

* Check3 was due today
* Check2/Hw?2 revision deadline tomorrow (Tuesday) at noon!
* No Gradescope exercise today (no new material)

* Exam1 on Wednesday!

* Bring something to write with, your andrewID card, and your andrewlID
written down on a piece of paper

* Arrive 5 minutes early if possible — we're checking IDs + paper at the door
e Do not enter until you have been checked in

Announcements — Code Reviews

e Code reviews!

* What: meet with a TA for 10-15 minutes to get qualitative feedback on your code from your Hw?2
submission. Attending the meeting and actively participating gets you 5 points on Hw3.

* Why: code style and structure are important, but not assessed by the autograder. The TA will point
out different ways to solve the problems and areas where you can code more clearly or more
robustly

* Some students may be exempted from this meeting if they already have good style. We'll let you know if you're in
that group before sign-ups are released.

* When: this weekend (Saturday-Sunday, a few slots on Monday)
* Where: TA's choice

* How to sign up for a code review slot
* Link: TBA on Piazza
* Important: sign-ups for each TA slot close 5pm Friday

* Also important: don't be late! If you are more than 3 minutes late to your meeting, you will not get
credit on Hw3.

* If something comes up and you need to cancel, notify the TA at least an hour before your timeslot. Do not do
this multiple times.

Review Topics

« Nesting control structures
« For Loops & While Loops
« Strings

e Looping by index

« Indexing/slicing

Nesting Control Structures

Nesting is the process of indenting control structures so that
they occur inside other control structures.

So far, we have learned about several control structures: function
definitions, conditionals, while loops, and for loops.

All of these structures have bodies, and each can be indented so it
occurs inside the body of another structure.

Let’s talk about common nested structures.

It iIs common to nest loops and conditionals inside functions.

We usually write function definitions at the top level of a program,
and nest conditionals/loops inside them when they're needed.

When we return in a nested conditional/loop, we exit that
structure and the whole function immediately.

def hasVowels(s):
() Note how the loop is indented inside the
for i in range(len(s)): function, and its body is indented again.
1t S[l] i aelou If the line 'return True'isreached, the
return True function will exit immediately without
finishing the loop.

return False

It is common to nest conditionals inside loops.

We often nest a conditional inside a loop to check a certain
property for every element that is iterated over.

It's okay to do nothing on iterations that don't meet the requirement
If there is no alternative action!

def countVowels(s):

result = 0 We don't need to update
for i in range(len(s)): result if the letter isn't a vowel,
if s[i] in "aeiou": so do nothing instead.

result = result + 1
return result

It iIs common call functions inside functions.

Activity: def foo(a, b):
y = a+b
What does this print? print("y in foo:", y)

return y + 3

def bar(x):
y = x + 1
print("y in bar:", vy)
return foo(x, V)

print(bar(4))

It iIs common to nest loops inside other loops.

f you need to iterate over multiple dimensions, a nested loop (one
oop nested inside another) will manage the complex iteration. Each
oop control variable manages one dimension.

: . It is important that the two loop
def coordinates(x, y): control variables have different names,

for xNum in r‘ange(x) . so that they can be referred to
separately!
for yNum in range(y):
print("(" + str(xNum) + ", " +
str(yNum) + ")")

Loops

A while loop is a type of loop that keeps repeating only while a
certain condition is True.

while <booleanExpression>:

<loopBody>
i=1
while i <= 5:
indentation —»~ Pri”t(i)l
(tab) 1=1

while is how Python knows this is a while loop
¢ and indentation is start of while loop body

while Loop Flow Chart

Unlike an 1 statement, a whi le loop
flow chart needs to include a

transition from the whi Le loop's body
back to itself.

- False

i=1
while i <= 5:

y

print(i)
=1+ 1

|
|
|
I print("done")
|
|
|

print("done")

loop body

13

To design algorithms with loops, we need to identify what needs
to change each iteration by creating a loop control variable.

A loop control variable needs three things to work correctly: start
value, continuing condition, update action

Algorithm: Print numbers 1 to 10 (inclusive)

_ num = 1
control variable: num

start value: 1
continuing condition: num <= 10 print(num)
update action: num = num + 1 num = num + 1

while num <= 10:

While Loops — Code Reading

Activity:
What does this code print?

n = 3
while n > 0:
if n ==
n = -100
print(n)

n = n + 1

W

o b~ W

3
4
-100

3
4
5
-100

While Loops — Code Writing

Activity: Write a while loop where:

Loop control variable is x

The start value is 99

Continuing condition is while x is a positive number
The update action is to subtract 2 from x

A for loop is a type of loop that keeps repeating over a
specific range of values.

for <loopVariable> in range(<maxNumPlusOne>) :

<loopBody>
1 for i in range(5):
indentation —» print(i+1)
(tab)

for is how Python knows this is a for loop and
1 is the loop control variable

range(5) describes the range of values it will loop
over:0,1,2,3,4

¢ and indentation is start of for loop body

10

>
!

For Loop Flow Chart

result = ©
Unlike while loops, we don't initialize or
update the loop control variable. The for
loop does those actions automatically. create
values in
We show actions done by the range 9,1,2 ...
function with a dotted outline here, i = next 8,9,10 No more
because they're implicit, not written value values
directly.
{ ___________ ~
n = 10] .
| | result = result + i | | print(result)
result = 0 | |
] - + : -_—— e e e e e o e e o
for 1 1in range(n 1) 560 body

result = result + 1
print(result)

18

range has 3 arguments, two are optional with default values

for 1 1n range(<start>,<stop>,<step>)

<start> Is first value of 1 for i in range(3, 8, 2):
optional, default =0 print(i)
i
<stop> Iis last value of 1+1 teration 1 |3
required iteration2 5
iteration 3 7

<step> how much to increment 1
optional, default = 1

For Loops — Code Reading

Activity: Which of the following will add up the numbers from 1 to 4

(inclusive)?
A. for 1 1n range(l 4): B. total = 0
total = © for i in range(1,4):
total = total + 1 total = total + 1
C. total = 0 D. for i 1n range(l 5):
for i in range(1,5): total = 0

total = total + 1 total = total + 1

For Loops — Code Writing

Activity: A Happy Number is a number that is evenly divisible by 2
and is not evenly divisible by 3.

Write a function totalHappyNumbers (n) that takes a positive

integer n and adds up all the happy numbers from 1 to n (inclusive)
and returns the sum.

Example:
totalHappyNumbers (6) returns 6 because 2+4 =6

totalHappyNumbers (10) returns 24 because 2+4+8+10 = 24

Bonus: How can you write totalHappyNumbers (n) with a
while loop?

Strings

Text values are called strings.

Text is recognized by Python as a string by putting it into either
single quotes: ‘Hello’ or double quotes: “Hel lo”

Strings can be concatenated using addition operator +:
>> “Hello” + “World”
HelloWor Ld

Strings can be repeated using multiplication operator *:
>> “Hello” *x 3
HelloHelloHello

24

Each character in a string is stored at a specific location (index).

Hello World

Hile||L||L]||O Wilo||lr||L||d
0] [1] [2] [3] [4] 5] 6] [7] [8] [9] [10]

Indices start at 0!

We can get a subset of the characters of a string using slicing.

allbllc|l|d]]|e

o] 011 2] [3] [4]

Slices are similar to ranges (stop is not inclusive, start and step are

optional) but the syntax is inside square brackets and separated
by colons [<start>:<stop>:<step>]

s = "abcde"

orint(s[2:len(s):1]) # prints '"cde"

orint(s[0:len(s)-1:1]) # prints "abcd"
orint(s[0:len(s):2]) # prints "ace"

Slices have 3 parts, ALL are optional with default values.

When we want to use a default value for a part, we leave it blank in
the slice.

s[::] and s[:] are both the string itself, unchanged
s[1:] is the string without the first character (start is 1)

s[:len(s)—-1] is the string without the last character (end is
len(s)-1)

s[::3] Iis every third character of the string (step is 3)

We can loop over characters in a string by visiting each index.

If the string is s, the string's first index is © and the last index is
len(s)—-1.Use range(len(s)) to visit all possible indexes.

s = "Hello WorlLd"
for 1 in range(len(s)):
print(i, s[1])

Strings — Code Reading

Activity: What are the outputs of the following slices:

s = "Towers of Hanoi"
s[3:8]

s[len(s)::-1]

s[10:1]

s[::]

s[len(s)]

Strings — Code Writing

Activity: Write findMatches(s1, s2), which takes two
same-length strings and returns True if they ever have the same
character at the same index, and Fa lse otherwise.

Examples:
findMatches("apple", "guava") returns False.

findMatches("apple", "grape") returns True, because the es
match.

Exam Taking Tips

You do not need to answer guestions in order!
« Read all the questions and then decide which ones to answer
« Be mindful of not spending too much time on one gquestion
Never leave anything blank
« If we ask you to write a function, at least write the function definition
Don’t track stuff in your head, write it down
« What is the value of each variable after executing each line?
« What are the indices of each of the elements in a string?
Pay close attention to restrictions in the writeup

Get rest!!!

