Week: 05									Date: 09/26/2024
	15-110 Recitation Week 5

Reminders
· Recitation Feedback Form
· Check 3 due Monday 09/30 @ noon
· Check 2 and HW 2 revisions due Tuesday 10/01 @ noon
· Exam on 10/02
· Review Sessions
· Small Groups!
· OH and Piazza are always there if you need individual help!

Overview
· List methods
· Recursion
· Aliasing
· Recursion (code writing)

	Problems

[bookmark: _gjdgxs]LIST CODE WRITING: REMOVE MATCHES
Write a function removeMatches(L, matchList) that takes in a list of numbers L, and removes all of the elements in L that are also in matchList.Write both a non-mutating and mutating version of this function.

Say we have L = [1,2,3,4,5].
Then, removeMatches(L, [1,5,10,15]) returns [2,3,4]. When it finishes running, L = [1,2,3,4,5].
And mutatingRemoveMatches(L, [1,5,10,15]) returns None, but L = [2,3,4] when done running.

Non-Mutating:					 Mutating:
	

	

RECURSION INTRO
General notes on recursion:
	Base Case

Recursive Case

	
Recreate the following function using recursion (write on the right empty space):

	def double(lst):
 result = []
 for i in range(len(lst)):
 result.append(2 * lst[i])
 return result

#double([1,2,3]) -> [2,4,6]
	

[bookmark: _fxm4gpz450c0]LIST ALIASING
Code trace and compare the following two options for ways to create “empty” 2D lists:
Option 1:
inner = [0, 0, 0, 0]
outer = [inner, inner, inner]

Option 2:
	rows = 3
outer = []
for row in range(rows):
 outer.append([0, 0, 0, 0])

For each option, after running the code above, what are the values in outer?

Option 1: outer =

Option 2: outer =

After adding the following line of code and running it:

outer[0][0] = 42

What are the values in outer?

Option 1: outer =

Option 2: outer =

Be sure you can explain what difference you are seeing, and which option you should use and why.

[bookmark: _27sl4ybtsdj9]

[bookmark: _tmy8wwaelyw8]RECURSIVE CODE WRITING
Write the function sumOddMToN(m, n) that takes two integers and recursively calculates the sum of all odd integers between m and n, not including n. You are guaranteed that m > 0 and n > 0, and m < n.

Example: sumOddMToN(3,10) should return 24, as 3+5+7+9=24, while sumOddMToN(2,7) should return 8 as 3+5=8 (7 is not inclusive).

	

