
1

Do this Piazza Poll!
https://tinyurl.com/yjk2wxvn

https://tinyurl.com/yjk2wxvn

Recursion II &
Search Algorithms

15-110 – Friday 09/27

Announcements

• Fill out Piazza Poll for topics to review during Monday’s exam
review lecture by tonight at 11:59pm

• Exam notes sheet posted on the course website will be given to
you the day of the exam so you can refer to it during the exam

• TA-led Exam1 Review Session:
• TBD

• Check3 due Monday at noon

3

https://piazza.com/class/m0bp2xiar0567v/post/128
https://www.cs.cmu.edu/~15110/practice/exam1-notes.pdf

Learning Objectives

• Trace over recursive functions that use multiple recursive calls.

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for
items in sorted lists

4

Programming with Recursion

5

Example: countVowels(s)

Problem: Write the function countVowels(s) that takes a string and
recursively counts the number of vowels in that string, returning an int. For
example, countVowels("apple") would return 2.

def countVowels(s):

 if ____________: # base case

 return ________

 else: # recursive case

 smaller = countVowels(_______)

 return ______________

6

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's
behavior based on whether the letter is a vowel or not.

def countVowels(s):

 if s == "": # base case

 return 0

 else: # recursive case

 smaller = countVowels(s[1:])

 if s[0] in "AEIOU":

 return 1 + smaller

 else:

 return smaller

7

Multiple Recursive Calls

8

The real conceptual power of recursion happens when we need
more than one recursive call!

Example: Fibonacci numbers
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.

9

images from
Wikipedia

The Fibonacci sequence is a sequence in which each number is the
sum of the two preceding ones.

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2), n > 1

10

def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

Two recursive calls!

Fibonacci Recursive Call Tree

11

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

3

1 0

1 1

2

1 0

1

Fibonacci Recursive Call Tree

12

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Another example: Towers of Hanoi

Goal: Move the entire stack of disks from one rod to another with the
following restrictions:

1. Only one disk may be moved at a time.
2. Each move consists of taking the upper disk from one of the stacks

and placing it on top of another stack or on an empty rod.
3. No disk may be placed on top of a disk that is smaller than it.

13

Solving Hanoi – Use Recursion!

Online version:
https://www.mathsisfun.com/games/towerofhanoi.html

It's difficult to think of an iterative strategy to solve the
Towers of Hanoi problem. Thinking recursively makes the
task easier.

The base case is when you need to move one disc. Just
move it directly to the end platform.

Then, given N discs:

1. Delegate moving all but one of the discs to the
temporary platform.

2. Directly move the remaining disc to the end
platform.

3. Delegate moving the all but one pile to the end
platform.

14

https://www.mathsisfun.com/games/towerofhanoi.html

Solving Hanoi - Code

Prints instructions to solve Towers of Hanoi
def moveDiscs(start, tmp, end, discs):
 if discs == 1: # 1 disc - move it directly
 print("Move one disc from", start, "to", end)
 else:
 # Move all but largest disc out of the way
 moveDiscs(start, end, tmp, discs - 1)

 # Move the largest disc to the goal
 moveDiscs(start, tmp, end, 1)

 # Move all but largest disc to the goal
 moveDiscs(tmp, start, end, discs - 1)

moveDiscs("left", "middle", "right", 3)

15

Solving Hanoi - Alternate version to get number of moves

Prints instructions to solve Towers of Hanoi and
returns the number of moves needed to do so.
def moveDiscs(start, tmp, end, discs):
 if discs == 1: # 1 disc - move it directly
 print("Move one disc from", start, "to", end)
 return 1
 else: # 2+ discs - move N-1 discs, then 1, then N-1
 moves = 0
 moves = moves + moveDiscs(start, end, tmp, discs - 1)
 moves = moves + moveDiscs(start, tmp, end, 1)
 moves = moves + moveDiscs(tmp, start, end, discs - 1)
 return moves

result = moveDiscs("left", "middle", "right", 3)
print("Number of discs moved:", result)

16

Linear Search

19

Search is one of the most common tasks a computer needs
to do.

You use search in real life all the time too! Every time you manually
look through papers or other physical documents for information,
you conduct a search algorithm of your own.

20

When we want to check if a list contains a specific value we
use the in operator.

x = [15, 16, 9, 7, 8, 16]
if 10 in x:

print("Found it!")

What algorithm does in implement?

We'll need to think about this from a computer's perspective...

21

A computer sees the list as a series of not-yet-known values
and needs to check each item.

23

x

15 16 9 7 8 16

At each item, the computer checks: is this 10?

Analogy: Searching a Stack of Books

This is like looking for a particular
book in a stack of books.

You need to repeatedly check each
book until you find the right title, or
until you've checked them all.

24

This is linear search: check each item in order.

We can implement this with a for loop:

def linearSearch(L, target):

 for i in range(len(L)):

 if L[i] == target:

 return True

 return False

26

You do: If target appears more than once in lst, which value will
cause the function to return?

Search follows common patterns for functions that use a loop to
return a Boolean: check-any and check-all

A check-any pattern returns
True if any of the items in the list
meet a condition, and False
otherwise.

def checkAny(L, target):
 for i in range(len(L)):
 if L[i] == target:
 return True
 return False

27

A check-all pattern returns True
if all of the items in the list meet a
condition, and False otherwise.

def checkAll(L, target):
 for i in range(len(L)):
 if L[i] != target:
 return False
 return True

For practice, how can we implement linear search recursively?

How do we make the problem smaller?

Answer: Call the linear search on all but the first element of the list.

What's the base case for linear search?

 Answer: an empty list. The item can't possibly be in an empty list, so the result is False.

 Also: a list where the first element is what we're searching for, so the result is True.

How do we combine the solutions?

 Answer: no combination necessary. The recursive call returns whether the item occurs in

 the rest of the list; just return that result unmodified.

29

Recursive Linear Search Code

def recursiveLinearSearch(L, target):

 if L == []:

 return False

 else:

 if L[0] == target:

 return True

 else:

 return recursiveLinearSearch(L[1:], target)

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "rabbit"))

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "horse"))

31

Alternative to Linear Search

Linear Search is a nice,
straightforward approach to
searching a set of items. But that
doesn't mean it's the only way to
search.

Assume you want to search a
dictionary to find the definition of a
word you just read. Would you use
linear search, or a different
algorithm?

32

Can we take advantage of
dictionaries being sorted?

Binary Search

33

Binary Search Divides the List Repeatedly

In Linear Search, we start at the beginning of a list and check each
element in order. So if we search for 98 and do one comparison...

In Binary Search on a sorted list, we'll start at the middle of the
list and eliminate half the list based on the comparison we do.
When we search for 98 again...

34

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

2 5 10 20 42 56 67 76 89 952 5 10 20 42 56 67 76 89 95

Many more #s have been eliminated!

Analogy: Searching in a Library

If you're looking for a particular
book in a library, you don't have to
check every single book!

You can navigate to the right
location because the books are
sorted and you know your book's
author already.

You can use existing information to
speed up your algorithm!

35

We can implement binary search using recursion.

1. Find the middle element of the list.
2. Compare the middle element to the target.
3. If they're equal – you're done!
4. If the item is smaller – recursively search to the left of the middle.
5. If the item is bigger – recursively search to the right of the middle.

37

Example 1: Search for 73

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found: return True

Example 2: Search for 42

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
Not found: return False

Activity: Trace Binary Search

You do: determine the correct trace for the following call to binary search. Which
numbers are visited?

binarySearch([2, 7, 11, 18, 19, 32, 45, 63, 84, 95, 97], 95)

40

What are the base case and recursive case of binary search?

How do we make the problem smaller?
 Answer: get rid of the half of the list we know the target isn't in (which half?).

What are the base cases for binary search?
 Answer: an empty list. The target can't possibly be in an empty list, so the result is False.
 Also: a list where the target is the middle element. Then we can stop searching and
 immediately return True.

How do we combine the solutions?
 Answer: no need to combine anything. Simply return the result of the recursive function call.

42

Binary Search in Code

Now we just need to translate the algorithm to Python.

def binarySearch(lst, target):
 if ____ # base case
 return _____
 else:
 # Find the middle element of the list.
 # Compare middle element to the target.
 # If they're equal – you're done!
 # If the item is smaller, recursively search
 # to the left of the middle.
 # If the item is bigger, recursively search
 # to the right of the middle.

43

Binary Search in Code – Base Case

The first base case is the empty list, and return False

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 # Find the middle element of the list.

 # Compare middle element to the target.

 # If they're equal – you're done!

 # If the item is smaller, recursively search

 # to the left of the middle.

 # If the item is bigger, recursively search

 # to the right of the middle.

44

Binary Search – Middle Element

To get the middle element, use indexing with half the length of the list.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 # Compare middle element to the target.

 # If they're equal – you're done!

 # If the item is smaller, recursively search

 # to the left of the middle.

 # If the item is bigger, recursively search

 # to the right of the middle.

45

Use integer division in case
the list has an odd length

Binary Search – Base Case

The second base case occurs when we find the target. Return True.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 if lst[midIndex] == target:

 return True

 # If the item is smaller, recursively search

 # to the left of the middle.

 # If the item is bigger, recursively search

 # to the right of the middle.

46

Binary Search – Comparison

Use an if/elif/else statement to decide which side to use for the smaller problem.

def binarySearch(lst, target):

 if lst == []:

 return False

 else:

 midIndex = len(lst) // 2

 if lst[midIndex] == target:

 return True

 elif target < lst[midIndex]:

 ________ # recursively search to the left of the middle

 else: # lst[midIndex] < target

 ________ # recursively search to the right of the middle

47

Binary Search – Recursive Calls

Use slicing to make the recursive call and return the result
immediately.

def binarySearch(lst, target):
 if lst == []:
 return False
 else:
 midIndex = len(lst) // 2
 if lst[midIndex] == target:
 return True
 elif target < lst[midIndex]:
 return binarySearch(lst[:midIndex], target)
 else: # lst[midIndex] < target
 return binarySearch(lst[midIndex+1:], target)

48

Linear Search vs. Binary Search

Why should we go through the effort of writing this more-complicated
search method?

Answer: efficiency. Binary search is vastly more efficient than linear
search, as it performs a lot fewer comparisons to find the same item (as
long as the list is already sorted).

This makes sense intuitively, but we don't yet have a way to prove that
binary search is more efficient. We'll introduce a way to do this soon.

49

Learning Goals

• Trace over recursive functions that use multiple recursive calls

• Recognize linear search on lists and in recursive contexts

• Use binary search when reading and writing code to search for
items in sorted lists

50

