Recursion

15-110 — Wednesday 09/25

Quizlet

Announcements

e Quizlet 2 grades are out...
e Reminder: Piazza poll for exam review topics will be posted!

e TBD
56
48
38
35 34
25
16
7
! -
|
2 3 4 5 6 7 8 9 10

0 1

Std Dev @

0.0 6.0 10.0 5.96 -

Minimum Median Maximum

Learning Goals

e Define and recognize base cases and recursive cases in
recursive code

e Read and write basic recursive code

Concept of Recursion

Recursion is a concept that shows up commonly in computing

and in the world.

Core idea: An idea X is recursive if X is used in it’s own definition.

Examples: fractals; nesting dolls; your computer's file system

eece® (i cos432-hw-devel
<> coula= ¥~ ap(Q
FAVORITES f [’_-j :.:':" > @ apps » [agenda » [autograder L
£ Do] helloGrading.pdf (3 becellint » (i BACKUP » | deployWebsite.sh
= A & he\locradmglex @ codejail [} ™ cos432-hw-devel > L:I HW1 »
= YSEEES i ihrocs " . [codevault » |5 cos432Assignments &3 Hw2 »
AirDrop &3 common » [grading » (@ HW3 »

(i@ Movies > = - =

[Desktop @ Music . & copied » @ Hw2 > Gl HWa »
o & od . [cos126 » | meetingplanning {30 HW4_new »

Applicati... @8 Pictures . [cos226 > 4 moo (&3 Hws »

[Documents i (] cos432 » [notes » [README

© pownloads | @ subhc -PY . & dkunisky.ps " oldhwl {31 sampleSolutions »
) 3 hwo.docx “ orgMeetingAgenda i save »

J3 Music (&3 scuts L F &

B songL.mp3 & misc » 5 outputpackl.zip (3 secureComm »
£ Movies el Songz'm"! & nifty » H outputpack2.zip {3 web >
Pictures & (emgp' ° . [onlineCourses » [} outputpack3.zip
& crai @8 temporary R (& profdef » [pass »

craigs 8 o . [professional » | Questions for Ed
e ® it (& programmin » [scheduling
& x5 ™ unf, (& reimb » [website »
EJ Vlrzl::mox = " (@ service » [weeklymeteting
DEVICES i D wols »
=
© Remote... {5 Macintosh HD » (] Users » jug » (] work » (5] cos432 » (] cosd32-he-devel

L Please Lake one |
HEERRAER

PROBLEMS
WITH V !
\ZEC\)BS\ON

‘l‘mCQSQ k;.ke one J'

Recursion is a hard concept to master because it is different
from how we typically approach problem-solving.

There are some problems what would be difficult to solve without
recursion. Recursion gives us a way to solve these problems with
elegant solutions.

We'll start by using recursion to solve very simple problems, then
show how it applies more naturally to complex problems in the
future.

When we use recursion in algorithms, it is generally used to
iImplement delegation in problem solving.

To solve a problem recursively:

1. Find a way to make the problem slightly smaller
2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with the solution
to the remaining part of the problem to get the answer

Example: lteration vs. Recursion

How do we add the numbers on a deck of cards?

Ilterative approach: keep track of the total so far, iterate over the
cards, add each to the total.

Recursive approach: take a card off the deck, delegate adding
the rest of the deck to someone else, then when they give you
the answer, add the remaining card to their sum.

Implementing lteration

Let's look at how we'd add the deck of four cards using iteration.

Before loop:

total | 0

cards I 5 2 7 3

Implementing lteration

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

total

cards I 5 2 7 3

Implementing lteration

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

total

cards I 5 2 7 3

Implementing lteration

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

total 14

cards I 5 2 7 3

Implementing lteration

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

total 17

cards I 5 2 7 3 And we're done!

lteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):

total = ©

for 1 in range(len(cards)):
total = total + cards[i]

return total

15

Implementing Recursion

Now let's add the same deck of cards using recursion.

Start State:

total | 0

cards I 5 2 7 3

16

Implementing Recursion

Now let's add the same deck of cards using recursion.

Make the problem smaller:

total I 0

cards I 5 2 7 3

17

Implementina Recursion This is the Recursion
P J Genie. They can solve

problems, but only if
Now let's add the same deck of cards using recursi the problem has been
made slightly smaller

than the start state.
Delegate that smaller problem:

total I 0 .

cards | 5 2 7 3

Implementing Recursion

Now let's add the same deck of cards using recursion.

Get that smaller problem’s solution:

total I 0

12

cards I 5 2 7 3

Implementing Recursion

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

total I 17 ‘

cards I 5 2 7 3

And we're done!

Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):
smallerProblem = cards[1:]
??? # how to call the genie?

return cards[@] + smallerResult

smallerResult

21

Base Cases and Recursive Cases

Big Idea #1: The Genie is the Algorithm Again!

We don't need to make a new algorithm to implement the Recursion Genie.
Instead, we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually,

the problem reaches a state where we can't make it smaller. We'll call that the
base case.

() 2

g ¥

Big Idea #2: Base Case Builds the Answer

When the problem gets to the base case, the answer is immediately known. For
example, in adding the numbers on a deck of cards, the sum of an empty deck is 0.

That means the base case can solve the problem without delegating. Then it can
pass the solution back to the prior problem-solver and start the chain of solutions.

5 +

5 2 7 3 2+

7 +
[2 : 3+

Recursion in Code — Recursive Call

To update our recursion code, we'll take two steps. First, we need
to add the call to the function itself.

def recursiveAddCards(cards):
smallerProblem = cards[1:]
smallerResult = ?2??

return cards[@] + smallerResult

25

Recursion in Code — Recursive Call

To update our recursion code, we'll take two steps. First, we need
to add the call to the function itself.

def recursiveAddCards(cards):
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)
return cards[@] + smallerResult

26

Recursion in Code — Base Case

Second, we add in the base case as an explicit instruction about what to
do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
if 2?2
2???

else:
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)

return cards[@] + smallerResult

27

Recursion in Code — Base Case

Second, we add in the base case as an explicit instruction about what to
do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
if cards == []:
return 0

else:
smallerProblem = cards[1:]
smallerResult = recursiveAddCards(smallerProblem)

return cards[©0] + smallerResult

28

Every recursive function has two parts: a base case and
recursive case.

These two big ideas are used in all recursive algorithms.

e Base case(s): One or more simple cases that can be solved with no further
work

e Recursive case(s): One or more cases that require solving "simpler”
(smaller/shorter/closer to the base case) version(s) of the original problem

def recursiveAddCards(cards):

if cards == []: } base case

return ©
else:
recursive smallerProblem = cards[1:]
case smallerResult = recursiveAddCards(smallerProblem)

return cards[@] + smallerResult

29

Python Tracks Recursion with Code Tracing!

Recall how we used tracing with bookmarks to keep track of
nested function calls. Python also uses this approach to track
recursive calls!

Becaus_e each functiqn call has its own set of local variables_
(which includes function parameters), the values across functions

don't get confused.

Let's switch to a different slide deck for an example.

Also check this out in pythontutor.

https://pythontutor.com/visualize.html#code=def%20addCards%28cards%29%3A%0A%20%20%20%20if%20cards%20%3D%3D%20%5B%20%5D%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20smallerProblem%20%3D%20cards%5B1%3A%5D%0A%20%20%20%20%20%20%20%20smallerResult%20%3D%20addCards%28smallerProblem%29%0A%20%20%20%20%20%20%20%20return%20cards%5B0%5D%20%2B%20smallerResult%0A%0AaddCards%28%5B5,%202,%207,%203%5D%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Activity: Find the largest number in a list

Given a list of cards, let’s write a recursive algorithm for finding the
largest number in the list.

What is the recursive case? (How do we make the problem smaller?)

What is the base case?

Programming with Recursion

Most of the simple recursive functions you write can take the
following form:

def recursiveFunction(problem):

if problem == ???: # base case is the smallest value
return _ # something that isn't recursive
else:
smallerProblem = ??? # make the problem smaller

smallerResult =
recursiveFunction(smallerProblem)

return # combine with the leftover part

33

Example: factorial

Assume we want to implement What's the base case?
factorial recursively (takes an int,

X ———
returns an int). Recall that:

What's the smaller problem?
X — 1

X! = Xx*x(X-1)*(x=-2)*...x2%1

We could rewrite that as... o
How to combine it?

Multiply result of (x—1) ! by x

x! = x * (x-1)!

35

Writing Factorial Recursively

We can take these alg%orithmic components and combine them with
the general recursive form to get a solution.

def factorial(x):
if x == 1: # base case
return 1 # something not recursive
else:
smaller = factorial(x - 1) # recursive call
return x * smaller # combination

36

Sidebar: Infinite Recursion Causes

RecursionError

What happens if you call a function on an
input that will never reach the base case?
It will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function
calls have been added to the stack. If it
sees there are too many calls, it raises a
RecursionError to stop your code from
repeating forever.

If you encounter a RecursionError,
check a) whether you're making the
problem smaller each time, an bl)
whether the input you're using will ever
reach the base case.

Learn to ~ Make
program ‘ recursive
‘ function

No exit

0
or I
’
condition | NS
N
pt < ith
N\
N

37

Example: countVowels(s)

Problem: Write the function countVowels (s) that takes a string and
recursively counts the number of vowels in that string, returning an int. For
example, countVowels ("apple'") would return 2.

def countVowels(s):
if : # base case

return

else: # recursive case
smaller = countVowels()

return

38

Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's
behavior based on whether the letter is a vowel or not.

def countVowels(s):

if s == : # base case
return O
else: # recursive case
smaller = countVowels(s[1:])
if s[@] in "AEIOU":
return 1 + smaller
else:

return smaller

39

Example (alternative solution): countVowels(s)

An alternative approach is to make multiple recursive cases based on the
smaller part.

def countVowels(s):

if s == "": # base case
return O

elif s[@] in "AEIOU": # recursive case
smaller = countVowels(s[1:])
return 1 + smaller

else:
smaller = countVowels(s[1:])

return smaller

40

Example: removeDuplicates(1lst)

Problem: Write the function removeDuplicates(lst) that takes a list of items and
recursively generates a new list that contains only one of each unique item from the
original list. For example, removeDuplicates([1, 2, 1, 2, 3, 4, 3, 3])
mightreturn [1, 2, 3, 4].

def removeDuplicates(lst):

if - # base case

return

else: # recursive case

smaller = removeDuplicates()

return

41

Example: removeDuplicates(1lst)

The recursive case generates a list that holds only unique elements. Just
check whether the remaining element is already in that list or not!

def removeDuplicates(lst):
if 1st == []: # base case
return []
else: # recursive case
smaller = removeDuplicates(lst[1:])
if lst[@] in smaller:
return smaller
else:
return [1st[@]] + smaller

42

[if time] Activity: recursiveMatch(1stl, 1st2)

You do: Write recursiveMatch(1lstl, 1st2), which takes two lists of
equal length and returns the number of indexes where 1st1 has the same

value as 1st2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6]) should
return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic.
Write a solution that should work assuming the recursive call gives the

proper result.

Learning Goals

e Define and recognize base cases and recursive cases in
recursive code

e Read and write basic recursive code

