
Recursion
15-110 – Wednesday 09/25



Quizlet

2



Announcements
• Quizlet 2 grades are out…
• Reminder: Piazza poll for exam review topics will be posted!

• TBD

3



Learning Goals

•Define and recognize base cases and recursive cases in 
recursive code

•Read and write basic recursive code

4



Concept of Recursion

5



Recursion is a concept that shows up commonly in computing 
and in the world.

Core idea: An idea X is recursive if X is used in it’s own definition.  

Examples:  fractals; nesting dolls; your computer's file system 

6



Recursion is a hard concept to master because it is different 
from how we typically approach problem-solving.

There are some problems what would be difficult to solve without 
recursion. Recursion gives us a way to solve these problems with 
elegant solutions.

We'll start by using recursion to solve very simple problems, then 
show how it applies more naturally to complex problems in the 
future.

7



When we use recursion in algorithms, it is generally used to 
implement delegation in problem solving.

To solve a problem recursively:

1. Find a way to make the problem slightly smaller

2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with the solution 
to the remaining part of the problem to get the answer

8



Example: Iteration vs. Recursion

How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the 
cards, add each to the total.

Recursive approach: take a card off the deck, delegate adding 
the rest of the deck to someone else, then when they give you 
the answer, add the remaining card to their sum.

9



Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Before loop:

10

total 0

cards 5 2 7 3



Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

First iteration:

11

total 0

i 0

cards

5

5 2 7 35 2 7 3



Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

12

total 5

i 0

cards

7

5 2 7 35 2 7 3

1



Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

13

total 7

i 1

cards

14

5 2 7 35 2 7 3

2



Implementing Iteration

Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

14

total 14

i 2

cards

17

5 2 7 35 2 7 3

3

And we're done!



Iteration in Code

We could implement this in code with the following function:

def iterativeAddCards(cards):

    total = 0

    for i in range(len(cards)):

        total = total + cards[i]

    return total

15



Implementing Recursion

Now let's add the same deck of cards using recursion.

Start State:

16

total 0

cards 5 2 7 3



Implementing Recursion

Now let's add the same deck of cards using recursion.

Make the problem smaller:

17

total 0

cards 5 2 7 35 2 7 3



Implementing Recursion

Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

18

total 0

cards 5 2 7 3

This is the Recursion 
Genie. They can solve 
problems, but only if 
the problem has been 
made slightly smaller 
than the start state.



Implementing Recursion

Now let's add the same deck of cards using recursion.

Get that smaller problem’s solution:

19

total 0

cards 5 2 7 3

12



Implementing Recursion

Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

20

total 0

cards 5 2 7 3

125 +

17

And we're done!



Recursion in Code

Now let's implement the recursive approach in code.

def recursiveAddCards(cards):

    smallerProblem = cards[1:]

    smallerResult = ??? # how to call the genie?

    return cards[0] + smallerResult

21



Base Cases and Recursive Cases

22



Big Idea #1: The Genie is the Algorithm Again!

We don't need to make a new algorithm to implement the Recursion Genie. 
Instead, we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, 
the problem reaches a state where we can't make it smaller. We'll call that the 
base case.

23

2 7 3

7 3
3

5 2 7 3



Big Idea #2: Base Case Builds the Answer

When the problem gets to the base case, the answer is immediately known. For 
example, in adding the numbers on a deck of cards, the sum of an empty deck is 0.

That means the base case can solve the problem without delegating. Then it can 
pass the solution back to the prior problem-solver and start the chain of solutions.

24

2 7 3

7 3
3

5 2 7 3

0

125 +17

03 +
37 +

102 +



Recursion in Code – Recursive Call

To update our recursion code, we'll take two steps. First, we need 
to add the call to the function itself.

def recursiveAddCards(cards):

    smallerProblem = cards[1:]

    smallerResult = ???

    return cards[0] + smallerResult

25



Recursion in Code – Recursive Call

To update our recursion code, we'll take two steps. First, we need 
to add the call to the function itself.

def recursiveAddCards(cards):

    smallerProblem = cards[1:]

    smallerResult = recursiveAddCards(smallerProblem)

    return cards[0] + smallerResult

26



Recursion in Code – Base Case

Second, we add in the base case as an explicit instruction about what to 
do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
    if ???
        ????
    else:
        smallerProblem = cards[1:]
        smallerResult = recursiveAddCards(smallerProblem)
        return cards[0] + smallerResult

27



Recursion in Code – Base Case

Second, we add in the base case as an explicit instruction about what to 
do when the problem cannot be made any smaller.

def recursiveAddCards(cards):
    if cards == [ ]:
        return 0
    else:
        smallerProblem = cards[1:]
        smallerResult = recursiveAddCards(smallerProblem)
        return cards[0] + smallerResult

28



Every recursive function has two parts: a base case and 
recursive case.

These two big ideas are used in all recursive algorithms.
• Base case(s): One or more simple cases that can be solved with no further 

work
• Recursive case(s): One or more cases that require solving "simpler" 

(smaller/shorter/closer to the base case) version(s) of the original problem

29

def recursiveAddCards(cards):

    if cards == [ ]:

        return 0

    else:

        smallerProblem = cards[1:]

        smallerResult = recursiveAddCards(smallerProblem)

        return cards[0] + smallerResult

base case

recursive 
case



Python Tracks Recursion with Code Tracing!

Recall how we used tracing with bookmarks to keep track of 
nested function calls. Python also uses this approach to track 
recursive calls!

Because each function call has its own set of local variables 
(which includes function parameters), the values across functions 
don't get confused.

Let's switch to a different slide deck for an example.

30

Also check this out in pythontutor.

https://pythontutor.com/visualize.html#code=def%20addCards%28cards%29%3A%0A%20%20%20%20if%20cards%20%3D%3D%20%5B%20%5D%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20smallerProblem%20%3D%20cards%5B1%3A%5D%0A%20%20%20%20%20%20%20%20smallerResult%20%3D%20addCards%28smallerProblem%29%0A%20%20%20%20%20%20%20%20return%20cards%5B0%5D%20%2B%20smallerResult%0A%0AaddCards%28%5B5,%202,%207,%203%5D%29&cumulative=false&heapPrimitives=nevernest&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


Activity: Find the largest number in a list 

Given a list of cards, let’s write a recursive algorithm for finding the 
largest number in the list.

What is the recursive case? (How do we make the problem smaller?)

What is the base case? 

31



Programming with Recursion

32



Most of the simple recursive functions you write can take the 
following form:

def recursiveFunction(problem):
    if problem == ???: # base case is the smallest value
        return ____ # something that isn't recursive
    else:
        smallerProblem = ??? # make the problem smaller
        smallerResult = 
recursiveFunction(smallerProblem)
        return ____ # combine with the leftover part

33



Example: factorial

Assume we want to implement 
factorial recursively (takes an int, 
returns an int). Recall that:

x! = x*(x-1)*(x-2)*...*2*1

We could rewrite that as...

x! = x * (x-1)!

What's the base case?
x == 1

What's the smaller problem?
x - 1

How to combine it?
Multiply result of (x-1)! by x

35



Writing Factorial Recursively

We can take these algorithmic components and combine them with 
the general recursive form to get a solution.

def factorial(x):
    if x == 1: # base case
        return 1 # something not recursive
    else:
        smaller = factorial(x - 1) # recursive call
        return x * smaller # combination

36



Sidebar: Infinite Recursion Causes 
RecursionError
What happens if you call a function on an 
input that will never reach the base case? 
It will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function 
calls have been added to the stack. If it 
sees there are too many calls, it raises a 
RecursionError to stop your code from 
repeating forever.

If you encounter a RecursionError, 
check a) whether you're making the 
problem smaller each time, and b) 
whether the input you're using will ever 
reach the base case. 37



Example: countVowels(s)

Problem: Write the function countVowels(s) that takes a string and 
recursively counts the number of vowels in that string, returning an int. For 
example, countVowels("apple") would return 2.

def countVowels(s):

    if ____________: # base case

        return ________

    else: # recursive case

        smaller = countVowels(_______)

        return ______________

38



Example: countVowels(s)

We make the string smaller by removing one letter. Change the code's 
behavior based on whether the letter is a vowel or not.

def countVowels(s):

    if s == "": # base case

        return 0

    else: # recursive case

        smaller = countVowels(s[1:])

        if s[0] in "AEIOU":

            return 1 + smaller

        else:

            return smaller

39



Example (alternative solution): countVowels(s)

An alternative approach is to make multiple recursive cases based on the 
smaller part. 

def countVowels(s):

    if s == "": # base case

        return 0

    elif s[0] in "AEIOU": # recursive case

        smaller = countVowels(s[1:])

        return 1 + smaller

    else:

        smaller = countVowels(s[1:])

        return smaller

40



Example: removeDuplicates(lst)

Problem: Write the function removeDuplicates(lst) that takes a list of items and 
recursively generates a new list that contains only one of each unique item from the 
original list. For example, removeDuplicates([1, 2, 1, 2, 3, 4, 3, 3]) 
might return [1, 2, 3, 4].

def removeDuplicates(lst):

    if ____________: # base case

        return ________

    else: # recursive case

        smaller = removeDuplicates(_______)

        return ______________

41



Example: removeDuplicates(lst)

The recursive case generates a list that holds only unique elements. Just 
check whether the remaining element is already in that list or not!

def removeDuplicates(lst):

    if lst == []: # base case

        return []

    else: # recursive case

        smaller = removeDuplicates(lst[1:])

        if lst[0] in smaller:

            return smaller

        else:

            return [lst[0]] + smaller

42



[if time] Activity: recursiveMatch(lst1, lst2)

You do: Write recursiveMatch(lst1, lst2), which takes two lists of 
equal length and returns the number of indexes where lst1 has the same 
value as lst2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6]) should 
return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. 
Write a solution that should work assuming the recursive call gives the 
proper result.

43



Learning Goals

•Define and recognize base cases and recursive cases in 
recursive code

•Read and write basic recursive code

44


