Lists and Methods

15-110 - Friday 09/20

Announcements

Quizlet 1a (Lecture 1)

e Hw2 due Monday at : S S —
noon A 5

e Quizlet1 grades 6.0 10.0 10.0 9.48 1.07
released

e Past quizlet questions
and answers posted
on the assessments
page of the course
website

e \\e are upd ated -
gradebook in Canvas 4.0 10.0 10.0 9.09 1.41

Reminder

As we are progressing into the semester and working with more complex topics in written and
programming checks/homework, we want to remind you that you should NOT be using any
Generative Al (ChatGPT, Co-pilot, etc.) for your solutions.

Using these tools to solve assignment (checks and homework, written and programming)
problems is an academic integrity violation. Do not enter assignment prompts or solutions
into these tools.

What to do when you are stuck instead of going to GenAl? We have multiple resources that
can help you including Piazza and OH!! Further, you can always submit partial work and/or use
the revision deadline. Submitting YOUR work, at any stage, is always better for your learning!

Quizlet 1

Solutions posted on the course website!

https://www.cs.cmu.edu/~15110/assessments.html

Activity: Practice Code Tracing

Similar example from Quizlet 1 on the course website here:

def outer(x):
y =X + 2
print("outer y:", y)
return inner(y) x 2
def inner(x):
y = X %k 2
print("inner y:", y)
return y

RO WLWOOOSNOULTESE WN -

= b

print(outer(4))

https://cs.cmu.edu/~15110/practice/unit1/function_definitions.html#exercise5.23

We’ve finished Unit 1!

Unit 5: CS In The World

Unit 4: CS As a Tool

Unit 3: Scaling Up
Computing

Unit 2: Data Structures
and Efficiency

Unit 1: Programming
Skills & Computer
Organization

The topics we cover in this
course build on each
other!

Unit 1: Programming
Skills & Computer
Organization

Exam 1 covers Unit 1: [Topics Lists]

Algorithms and Abstraction
Programming Basics

Data Representation

~unction Calls

~unction Definitions

Booleans, Conditionals, and Errors
Circuits and Gates

While & For Loops

String Indexing, Slicing, and Looping

https://www.cs.cmu.edu/~15110/practice/exam1-topics.pdf

Unit 2: Data Structures
and Efficiency

Unit 2 Topics:

Data Structures: things we use while
programming to organize multiple pieces
of data in different ways.

e lists, dictionaries, trees, graphs

Efficiency: the study of how to design
algorithms that run quickly, by minimizing
the number of actions taken

e search algorithms, Big-O, tractability

Learning Goals

* Read and write code using 1D and 2D lists

» Use string/list methods to call functions directly on values

String Methods

A method is different from a built-in function, it belongs to the
object and has the syntax object.method().

We have seen an example of this with tkinter:

create_rectangle is a method called on canvas, which is a data
structure.

canvas.create_rectangle(50,50,100,100)

Instead of isdigit(s) wewrite s.isdigit().
Instead of islower (s) we write s.1slower ().

You do not need to memorize all of these methods!

There is a whole library of built-in string and list methods that have
already been written; you can find them at:

« docs.python.org/3/library/stdtypes.htmi#string-methods
« docs.python.org/3/tutorial/datastructures.html#more-on-lists

Use the Python documentation to lookup the name of functions,
instead of trying to memorize all of them.

http://docs.python.org/3/library/stdtypes.html#string-methods
http://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Some methods return information about the string.

s.isdigit(), s.1slower (),
and s.isupper () return True
iIf the string is all-digits,
all-lowercase, or all-uppercase,
respectively.

s = "HELLO"
s.islower ()
s.isupper()

s = ""12345"
s.isdigit()

False
True

True

Some methods return information about the string.

s.count(x) return the number < = "hello"
of times the subpart x occurs in
S. s.count("l") # 1

s.index(x) return the index of s.1index("o") # 4

the subpart x in s, or raise an s.index(“H”) # ValueError!
error if it doesn't occur in the

value.

Example: Check if a string starts with a capital letter and the
rest are lowercase.

def formalName(s):
return s[0].isupper() and s[1l:].islower ()

Some methods return a new string.

s.lower () and s.upper () return a new string that is like the
original, but all-lowercase or all-uppercase, respectively.

s = "heLlo"

a = s.lower() # a = "hello"
b = s.upper() # b = "HELLO"
C

= "OK".lower() # c = "ok"

Some methods return a new string.

s.replace(a, b) returns a new string where all instances of the
string a have been replaced with the string b.

s = "Hello"
c = s.replace("1", "y") # c = "Heyyo"

s.strip() returns a new string with excess whitespace (spaces,
tabs, newlines) at the front and back removed.

d =" Hi there ".strip() # d = "Hi there"

Example: Make a password-generating function

def makePassword(phrase):
phrase2 = phrase.lower()

phrase3 = phrase2.replace("a","@").replace("o", "0")
return phrase3

Lists

A list is a data structure that holds an ordered collection of
data values.

Sign In Here
0. Elena

1. Max

2. James

3. lyla

4. Ayaan

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a
collection of data using only one variable.

signInSheet = ['Elena','Max','James','Iyla’', 'Ayaan']

We use square brackets to create lists in Python.

| # empty Llist

"uno", '"dos", "tres"] # Llist with three strings
5, 8, 1, 10] # list with 4 numbers

1, "dance", 4.5] # lists can have mixed types

o 0O T
|

We can use operators with lists in a similar way as we can with
strings.

Like strings, lists can be concatenated using addition operator +:
>> [1, 2]+ [3, 4]
[1, 2, 3, 4]

Like strings, lists can be repeated using multiplication operator *:
>> I: Ilall, llbll :l * 2
[Ilall, Ilbll, Ilall, Ilbll]

Like strings, we can index, slice, get the length, and check
membership with lists.

lst = ["a", "b", "c", "d"]
lst[1l] # 1ndexing - "b"

lst[2:] # slicing - ["c'", "d"]
"c" in lst # membership - True
"abc" 1n lst # membership - False

There are built-in functions we can also use with lists.

len(lst) # length of a list

min(lst) # smallest element of the list
max(lst) # biggest element of the Llist
sum(lst) # total sum of elements in the list

random.choice(lst) # picks a random element from the 1list

Activity: Evaluate the Code

You do: what will each of the following code snippets evaluate to?
[51 * 3
[Ilall, Hbll, "C"][l]

min([5, 1, 8, 2])

26

We can use a for loop over the indexes of the list to access
each item.

Algorithm: Sum the elements in a list prices.

total = 0

for 1 in range(len(prices)):
total = total + prices|[i]

print(total)

Algorithm: Write a function that finds the maximum value in a
list of strings.

def findMax(nums):
biggest = nums[0] # why not 07 Negative numbers!
for 1 in range(len(nums)):
1if nums[1] > biggest:
biggest = nums[1]
return biggest

Some methods return information about lists.

lst.count(x) return the

number of times the element x st = [10, 20, 30, 40, 50]
occurs in Lst. lst.count(20) # 1

Lst.index (x) return the index
of the element x in Lst, orraise 1st.index(50) #4
ﬁ]nle;rtcor If it doesn't occur in the lst.index(5) # ValueError!

Some methods convert strings into lists and lists to strings.

s.split(c) splits up a string e = "one,two,three".split(",")
iInto a list of strings based onthe # e = ["one", "two", "three"]
separator character, c.

c.join(Llst) joins a list of

strings together into a single f="-".Join(["ab", "cd", "ef"])
string, with the string c between # ¥ = "ab-cd-ef"

each pair.

2D Lists

A 2D list is a list where the items it contains are lists.

We often need to work with data that is two-dimensional, such as

the coordinates on a grid, values in a spreadsheet, or pixels on a
screen.

2D List Example

The table below shows cities in
Pennsylvania, the county
they’re in, and their population.

City County Population
Pittsburgh |Allegheny 302,407
Philadelphia|Philadelphia |1,584,981
Allentown |Lehigh 123,838
Erie Erie 97,639
Scranton Lackawanna [77,182

In Python, we could
represent this using
the 2D list to the
right. Each of the
five elements of the
list is itself a list!

Population List

0. 0. "Pittsburgh"”
1. "Allegheny”
2. 302407

1. | 0. "Philadelphia”
1. "Philadelphia”
2. 1584981

2. 0. "Allentown"
1. "Lehigh"
2.123838

3. 0. "Erie"
1. "Erie"
2.97639

0. "Scranton”
1. "Lackawanna"
2.77182

33

Setting up a 2D list still uses square brackets, where each inner
list is one data value.

cities = [["Pittsburgh'", "Allegheny", 302407],
"Philadelphia", "Philadelphia'", 1584981],
"Allentown", "Lehigh", 123838],

("Erie", "Erie", 97639],

 "Scranton", "Lackawanna'", 77182]]

This is across multiple lines but treated as one line because each part ends with a comma.

The length of a 2D list is the number of lists in the outer list.
len(cities) # 5

When indexing into a 2D list, the first square brackets index
into a row and the second index into a column.

cities = [["Pittsburgh", "Allegheny", 302407],
""Philadelphia'", '"Philadelphia", 1584981],
"Allentown", '"Lehigh", 123838],

("Erie", "Erie", 97639],

| "Scranton", '"Lackawanna'", 77182]]

cities # the entire Llists

cities[2] # ["Allentown", "Lehigh'", 123838]
cities[2][1] # "Lehigh"

When using looping over a 2D list with one loop, indexing into
the list will produce the inner list.

def getCounty(cities, cityName):
for 1 in range(len(cities)):
entry = cities[1] # entry 1s a list
1T entry[0] == cityName:
return entry|[1]
return None # city not found

To loop over every element of a 2D list, we need to use nested
for loops.

gameBoard — [[HXII , " " , IlOII:l , [II " , IlXII , " ||:| , [II " , " " , IlOII:l :l
for row in range(len(gameBoard)): # each row is a list
boardString = ""

for col in range(len(gameBoard[row])): # each col is a string
boardString = boardString + gameBoard[row] [col]
print(boardString) # separate rows on separate lines

Activity: getTotalPopulation(cities)

Fill in the blanks for the function g etTotalPoRUIat1 on(cities) that takes the
Iclt -information 2D list from before and finds the total population of all cities in the
IS

def getTotalPopulation(cities):

__________ =0

for row in range(__________)
pop = ____
total =

return total

Hint: note that the population is in the third column. Which index corresponds to that?

38

[if time] Activity: getFirstName(fullName)

You do: write the function getFirstName (ful lName), which
takes a string holding a full name (in the format "Farnam
Jahanian'") and returns just the first name. You can assume

the first name will either be one word or will be hyphenated (like
"Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to
isolate the first name from the rest of the string.

39

Learning Goals

* Read and write code using 1D and 2D lists

» Use string/list methods to call functions directly on values

