String Indexing, Slicing,
and Looping

15-110 — Wednesday 09/17

Quizlet

Pencils in the front!

Learning Goals

*Index and slice into strings to break them up into parts

» Use for loops to loop over strings by index

Revisiting Drawing Grids

We can use nested for loops to draw a grid!

We'll use nested for loops
(along with math and logic) to

determine where to draw each
square with
create_rectangle.

A grid with gridSize=4, has 4
columns and 4 rows of equal

sized squares.

To draw a grid, we need to figure out the pattern to draw
50x50 squares.

What is the loop control
variable and what is the start, Desired outcome:
stop, and step?

X=0 X=50 X=100 x=150 X=200

For each rectangle, what are
the topX and topY
coordinates based on the
control variable?

sq 0 sql sq 2 sq 3

For each rectangle, what are
the bottomX and bottomY
coordinates based on the
control variable?

To draw a grid, we loop over the columns, the left side is the
square number * the square size.

Desired outcome:

def drawGrid(canvas, gridSize):

.)) X=0 x=50 x=100 x=150 X=200
for col in range(gridSize): y=0
topX = col x 50
bottomX = topX + 50
topY = 0
y=50
bottomY = 50
sq 0 sql sq 2 sq 3
canvas.create_rectangle(topX,
topYy,
bottomX,

bottomY)

We can draw each row by putting the logic for drawing a row
Inside an outer loop.

The Qu‘ter |Oop represents a def drawGrid(canvas, gridSize):

cell's row, while the inner for row in range(gridSize):
loop represents a cell's for col in range(gridSize):
column. topX = col * 50

bottomX = topX + 50
topY = row * 50

Calculate the top of each cell bottomy = topy + 56

based on the value's row,
using the same logic that
found the column
coordinates.

canvas.create_rectangle(topX,
topY,
bottomX,
bottomY)

We can add stripes with conditionals.

We can make the grid more
exciting by adding colors to the
cells, to draw stripes.

Stripes alternate by row. Check
whether the row is odd or even
using the mod operator.

if row % 2 == 0:
color = "red"
else:
color = "green"

canvas.create_rectangle(topX,
topY,
bottomX,
bottomY)

String Indexing and Slicing

What we already know: Text values are called strings.

Text is recognized by Python as a string by putting it into either
single quotes: ‘Hello’ or double quotes: “Hel lo”

Strings can be concatenated using addition operator +:
>> “Hello” + “World”
HelloWor Ld

Strings can be repeated using multiplication operator *:
>> “Hello” *x 3
HelloHelloHello

11

We represent text as individual characters.

Break text into characters:

Hello World

Hile||L||L]]|O Wilo||lr]|]|L

We can manipulate text data in many ways by doing operations
with these individual characters!

Each character in a string is stored at a specific location (index).

Hello World

Hile||L||L]||O Wilo||lr||L||d
0] [1] [2] [3] [4] 5] 6] [7] [8] [9] [10]

Indices start at 0!

Indexing is when we use square brackets to get a character at
a specific location.

s = “KIMCHEE?”
s[2] #M

We can get the number of characters in a string with the built-in
function Len(s).

print(len(s)) #7

There are some common string indexes.

How do we get the first character in a string?
s[0]

How do we get the last character in a string?
s[len(s) - 1]

What happens if we try an index outside of the string?
s[len(s)]

Activity: What is the index?
Given the string "abc123", what is the index of...
" a II?

"C"?

||3||?

We can get a subset of the characters of a string using slicing.

allbllc|l|d]]|e

o] 011 2] [3] [4]

Slices are similar to ranges (stop is not inclusive, start and step are

optional) but the syntax is inside square brackets and separated
by colons [<start>:<stop>:<step>]

s = "abcde"

orint(s[2:len(s):1]) # prints '"cde"

orint(s[0:len(s)-1:1]) # prints "abcd"
orint(s[0:len(s):2]) # prints "ace"

Slices have 3 parts, ALL are optional with default values.

With no colons, we are indexing and only getting one character
s|<index>]

To specify a start we need 1 colon, default value is 0
s|<start>:<stop>|]

To specify a step we need 2 colons, default value is 1
s[<start>:<stop>:<step>]

When slicing using colons, stop is also optional (not inclusive) and
has a default value of Llen(s).

Slices have 3 parts, ALL are optional with default values.

When we want to use a default value for a part, we leave it blank in
the slice.

s[::] and s[:] are both the string itself, unchanged
s[1:] is the string without the first character (start is 1)

s[:len(s)—-1] is the string without the last character (end is
len(s)-1)

s[::3] Iis every third character of the string (step is 3)

Activity: Find the Slice

Given the string "abcdefghij", what slice would we need to
get the string ""cf1"?

21

More String Things

Whitespace is represented in different ways in Python

depending on the character.

||\-t||

i3
RETURN

ll\nll

The \ character is a special character that indicates an escape
sequence. It is modified by the letter that follows it.

These two symbols are treated as a single character by the
interpreter.

"ABC\nDEF"
"ABC\tDEF"

Haiku by Carol A. Coiffait

You can use triple quotes to make multi-line strings.

s = """This Autumn midnight
Orion's at my window

shouting for his dog."""
IS equivalent to:

"This Autumn midnight\nOrion's at my window\nshouting for his dog."

We check if a character or substring is within a string using
the 1n (and the opposite not 1n) operator.

"e" 1n "Hello" # True

"W'" in "CRAZY" # False

"seven" 1n "Four score and seven years ago'" # True
"wow" not 1n "That's dmpressive" # True

Looping with Strings

We can loop over characters in a string by visiting each index.

If the string is s, the string's first index is © and the last index is
len(s)—-1.Use range(len(s)) to visit all possible indexes.

s = "Hello WorlLd"
for 1 in range(len(s)):
print(i, s[1])

If you need to solve a problem with strings that requires doing
something with every character, you can use a loop.

Algorithm: Remove spaces from a string.

s = "Wow! This is so exciting!"
result = ""
for 1 1in range(len(s)):
if s[i] =" ": # note the space between the quotes!
result = result + s[i]

print(result) # "Wow!Thisissoexciting!"

We can use string methods to check if certain properties about
strings is true.

A method is different from a a = s.lower() # a = "hello"

built-in function, it belongs to

the object and has the syntax ~ . ;

ObjeCt.methOd(). b = S.upper() # b = HELLO
s = "12345"

s.isdigit(), s.islower (),
and s. 1supper() return True
iIf the string is all-digits,
all-lowercase, or all-uppercase,
respectively.

s.isdigit() # True

We will talk more about string methods next lecture!

Activity: Coding with Strings

You might be able to recognize a person by the types of punctuation they
use in text messages. Maybe one friend loves exclamation points while
another friend never uses them.

You do: write a function getPunctuationFrequency (text, punc)
that takes a text message (a string) and a ?unctuatlon character (another
string) and returns the frequency of how often that character appears in the
text compared to other characters - the number of times it appears over
the total number of characters.

For example, getPunctuationFrequency("That's so exciting!!
Good for you man!', '"!") wouldreturn ~0.079, because
texq(lamatlon marks form 3/38 = ~0.079 as a ratio of the characters in the
ext.

31

On your own: Try it with real data!

We can try running our analysis function on real texts!

Websites like Project Gutenberg make the text of books available online for free.
You can copy that text into a string, then run that string through the function.

Running the function through some popular classic fiction and trying out a few
different types of punctuation already gleans interesting results. For example, the
character . takes up 1.15% of text in The Great Gatsby compared to 0.82% in
Pride and Prejudice; on the other hand, the character ; takes up only 0.03% of
text in The Great Gatsby compared to 0.21% of text in Pride and Prejudice.

Combining these frequencies together can give us an interesting map of the
writing styles of different authors!

https://www.gutenberg.org/

Learning Goals

*Index and slice into strings to break them up into parts

» Use for loops to loop over strings by index

Sidebar:
When do we use len(s) vs. len(s)-17

It can be hard to tell when to use len(s) vs. len(s)-1. What do
these two expressions really mean?

len(s) is the length of the string, the number of characters it
contains. Because the first index of a stringis 0, not 1, s|[len(s) |
returns an error.

On the other hand, s[len(word) : | creates a slice that starts exactly
len(word) characters into the string, which could be useful.

len(s)-1isthe last index of the string. s[len(s)-1] returns the
last character of a string.

34

