Debugging Logical Errors

= | example.py

When your code generates a logical error, the best 45T SiidATeraGERaRaL, il

thing to do is compare the expected output to the if n <= 0:
return "Cannot compute the average"
actual output. return total // n
. . def testFindAverage():
1. Copy the function call from the assert thatis print("Testing findAverage()...", end="")
ol . . assert(findAverage(20, 4) == 5)
failing into the interpreter. Compare the actual ssSErt (FindAveragelis, 2) == 6.5)
assert(findAverage(10, 0) == "Cannot compute the average")
OUtpUt to the EXpECtEd OUtpUt
' print("... done!")

testFindAverage()

* assert functions work by throwing an

assertion error if the expression inside them | o |)
is fal Running script: "C:\Users\river\Downloads\example.py
IS Talse Testing findAverage()...Traceback (most recent call last):

. File "C:\Users\river\Downloads\example.py", line 13, in
2. If the expected output seems incorrect, re-read the <noqutes

problem prompt. testFindAverage ()
Fi1e "C:\Users\river\Downloads\example.py", line 9, in t
3. If you're not sure why the actual output is eStF;rs]gé\r{iE?gidAvera IS, B e B
produced, use a debugging process to investigate. iccertione Relh B = B \
If you've written the test set yourself, you should also 7 _ expected output
take a moment to make sure the test itself is not function call

incorrect.

Understanding the Prompt

When something goes wrong with your code, before rushing to change
the code itself, you should make sure you understand conceptually
what your code does.

First- make sure you're solving the right problem! Re-read the problem
prompt to check that you're doing the right task.

It can help to analyze the test cases to make sure you understand why
each input results in each output.

Making Hypotheses

If something looks wrong in the printed results, make a hypothesis
about what the problem is and adjust your code accordingly. Then run
the code again and see if the values change. Repeat this as much as
necessary until your code works as expected.

An important part of this process is that you have to be intentional
about the changes you make. Don't just change parts of the code

haphazardly!

Sidebar: Clean Up Top-Level Testing

Some students like to test their code by adding print statements and
function calls at the top level of the code (not inside a function).

This is fine, but if you do this, remove the top-level code before you
submit on Gradescope because it might confuse the autograder!!

Alternative approach: do testing in the shell/interpreter! After you run
your file, all of your functions are available there to be tested.

There are many approaches you can take towards debugging code
effectively, including:

* Rubber Duck Debugging: talking through your code
* Printing and Experimenting: visualizing what's in your code
* Thorough Tracing: checking each part of the code line-by-line

Rubber Duck Debugging

Explain what your code is supposed to do and what is going wrong out
loud to an inanimate object, like a rubber duck.

In the process of explaining your code out loud, you may find that a
piece of your code does not match your intentions or a missing step.
This works more often than you might think!

Print and Experiment

Or try printing and experimenting to
determine where in your code the
problem is.

Add print statements strategically
around where you think the error
occurs. Run the code again and check
whether the printed values match
what you think they should be at that
stage in the code.

You can also make your print
statements more informative - e.g. add
a brief string to indicate what’s being
printed and where.

£ is some function

def foo():
x = (1)
y = £(2)

print(“Before
if x < 10:
y += 100
print(“In
elif y < 10:
X += 100
print(“In
else:
X 4=y
print(“In
print(x, y)

return x + vy

. _» €€y, »
1-F X= 3 X) y_ B y)

if y=", vy)

elif x=", x)

else x=", x)

Thorough Code Tracing

If you can't find the problem through printing and experimenting, you
may have to resort to code tracing to determine what's going wrong.

Step through your code line by line and track on paper what values
should be held in each of your variables at each step of the process.

Compare your traced values with what values your code should be
producing. This might help you identify where the problem is occurring.

Tracing with Tools

Learning how to trace code by hand is a useful skill, but there are also
tools that can help support you during debugging. One such tool is
actually built right into Thonny! To access it, you just need to click the
bug icon next to the green run arrow.

10

Using Thonny’s Debugger

Once you've selected the bug icon, the menu will look like this

— —_ p—

= - Y1+ \ | =377 11 ~mic -
P: . L v c VY h'\ “J ! 9 l~_' > e

] & O "-*_b‘lf‘. Up @ -

Select the “Step Into” Arrow (circled in red) to progress through the
code bit by bit. It will assign variables their values and complete
calculations one step at a time to show you exactly what is happening
in your code.

File Edit View Run Tools Help

BRr Assistant
[] ’ ;
Using Thonny’s Debugger oo o
= E Heap
: y Help
If you would like to see the P
variables that you are currently BB e
. . . Outline
working with in your code and ; Program tree
. | v Shell
what va.Iues they .hold, simply -
select view -> variables e |_TODO

Program arguments
Plotter
CQ-
Increase font size Ctrl++

Decrease font size Ctrl+-

Focus editor Alt+E
Focus shell Alt+S

Additional Code Tracing Resources

If you would like to learn more about how to use Thonny’s debugger,
visit the bonus slides here.

If you would like to try a different resource you can also check out the
website http://pythontutor.com/ .

https://docs.google.com/presentation/u/0/d/1ry08H00YPRjybmS27IqQraKtDtccnjseUEHXJiay6F8/edit
http://pythontutor.com/

Finally, remember that debugging is hard! If you've spent more than
15 minutes stuck on an error, more effort is not the solution. Get a
friend or TA to help (or Piazza!), or take a break and come back to the
problem later. A fresh mindset will make finding your bug much easier.

HOW'S THE
DEBUGGING

14

