
While Loops
15-110 – Friday 09/13

Announcements

• Check2 due Monday at noon

• You're encouraged to attend small group sessions to get help with learning the
course content. In particular, the TAs will provide more help than usual on one of the
Hw2 problems in small group sessions next week (drawIllusion). Contact your TA
to learn more!

• Check1/Hw1 revision deadline: Tuesday 09/17 noon

− If you want to update your submission based on feedback, just make the
changes to your solution and resubmit (applies to exercises too!)

− TAs will regrade within a week, usually

− Note that revision submissions are capped at 90 points – don't resubmit if you
already scored a 90 or above. (Still look at your feedback, though!)

2

Learning Goals

•Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update
actions for loop control variables

•Translate algorithms from control flow charts to Python code

•Use nesting of statements to create complex control flow

3

Repeating actions is messy.

Let's write a program that prints out the numbers from 1 to 10.
Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

A loop is a control structure that lets us repeat actions so that
we do not need to write out similar code over and over again.

Loops are powerful when we
want to repeat a pattern.

Identify the parts of the pattern
that are the same and the parts
that are different.

same

print(1)
print(2)
print(3)
print(4)
print(5)

different

While Loops

while <booleanExpression>:
 <loopBody>

A while loop is a type of loop that keeps repeating only while a
certain condition is True.

while is how Python knows this is a while loop
: and indentation is start of while loop body

indentation
(tab)

The while statement body must become False for the loop
to end.

 i = 1
while i <= 5:
 print(i)
 i = i + 1
print("done")

1

2

3

4

5

6

7

8

9

Check this out on pythontutor.com.

…

https://pythontutor.com/render.html#code=i%20%3D%201%0Awhile%20i%20%3C%3D%2010%3A%0A%20%20%20%20print%28i%29%0A%20%20%20%20i%20%3D%20i%20%2B%201%0Aprint%28%22done%22%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

A while loop with a condition that does not become False is
an infinite loop.

i = 1
while i > 0:
 print(i)
 i = i + 1

Hit the STOP button in
Thonny to stop an infinite
loop!

if Flow Chart
i = 1

if i <= 5

print(i)

i = i + 1

print("done")

True False

10

i = 1
if i <= 5:
 print(i)
 i = i + 1
print("done")

while Loop Flow Chart

Unlike an if statement, a while loop
flow chart needs to include a
transition from the while loop's body
back to itself.

i = 1
while i <= 5:
 print(i)
 i = i + 1
print("done")

i = 1

if i <= 5

print(i)

i = i + 1

print("done")

True False

loop body

11

Activity: Trace the Program

You do: if we slightly change the code from the previous
program, what happens to the program?

i = 1
while i <= 5:
 i = i + 1 # moved up one line
 print(i)
print("done")

12

Loop Control Variables

To design algorithms with loops, we need to identify what needs
to change each iteration by creating a loop control variable.

A loop control variable needs three things to work correctly: start
value, continuing condition, update action

Algorithm: Print numbers 1 to 10 (inclusive)

control variable: num
start value: 1
continuing condition: num <= 10
update action: num = num + 1

num = 1

while num <= 10:

 print(num)

 num = num + 1

To count backwards we change the start value, continuing
condition, and update action of the loop control variable.

Algorithm: Print numbers 10 to 1 (inclusive)

control variable: num
start value: 10
continuing condition: num >= 1
update action: num = num - 1

num = 10

while num >= 1:

 print(num)

 num = num - 1

Activity: Print Even Numbers

You do: your task is to print the even numbers from 2 to 100
(inclusive).

What is your loop control variable? What is its start value,
continuing condition, and update action?

Once you've determined what these values are, use them to
write a short program that does this task.

16

Loops in Algorithms

We can update additional variables inside a loop body to
implement more complex algorithms.

Algorithm: Add the numbers
from 1 to 10

Need to keep track of two
numbers:
● the current number we are

adding
● the current sum

result = 0

num = 1

while num <= 10:

 result = result + num

 num = num + 1

print(result)

Which is the loop control
variable?

It is important to be able to trace loops to understand (and
debug!) what a program is doing at the end of each iteration.

result = 0
num = 1
while num <= 7:
 result = result + num
 num = num + 1
print(result)

result num

before loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

after loop 28 8

Order matters when updating variables and Python only
checks the loop condition at then end of each iteration.

result num

before loop 0 1

iteration 1 2 2

iteration 2 5 3

iteration 3 9 4

iteration 4 14 5

iteration 5 20 6

iteration 6 27 7

iteration 7 35 8

after loop 35 8

result = 0
num = 1
while num <= 7:
 num = num + 1
 result = result + num
print(result)

We can nest conditionals in while loops, putting conditions
on control variables.

Algorithm: (printing patterns)
Write code to produce the
following
x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

If the control variable is even,
print x, if odd print o.

row = 0
while row < 5:
 if row % 2 == 0:
 print("x-x-x")
 else:
 print("-o-o-")
 row = row + 1

We can nest while loops in functions.

If we return inside a loop,
Python immediately exits the
function – no further iterations
will run.

Algorithm: Check whether a
multiple of num occurs within a
certain range [start, end]

def multipleInRange(start, end, num):

 i = start

 while i <= end:

 print(i) # shows loop ends early

 if i % num == 0:

 return True

 i = i + 1

 return False

Coding with Multiple Data Points

Now that we have loops, we can start writing algorithms to solve
real-world problems. For example, we often want to analyze multiple
data points while writing code.

Loops make it possible for us to repeat an action multiple times- that
should make it possible for us to get multiple data points. But how
can we receive that data?

For now, we'll use the input built-in function to repeatedly ask the
user for data. Later we'll learn about a new data type that can store
multiple values in one place.

23

Looping with input

If we call input inside the loop
body, we can get multiple inputs
from the user and process them
like a data stream.

We'll need to give the user a
way to signal that they're done
entering numbers. This can by
done with a special input, like
the string 'q'.

For example, this code sums the
numbers entered by the user
until they signal an end to the
numbers.

result = 0

value = input("Enter a number, or q to quit:")

while value != "q":

 num = int(value)

 result = result + num

 value = input("Enter a number, or q to quit:")

print("Total sum:", result)

Note: our loop control variable here is value. It
starts as a user input, is updated by asking for new
input, and continues looping while it is not "q".

24

Learning Goals

•Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update
actions for loop control variables

•Translate algorithms from control flow charts to Python code

•Use nesting of statements to create complex control flow

25

Extra Slides:
Advanced Loops in Algorithms

This content will not be tested, but is interesting to know!

26

Loop Control Variables – Advanced Example

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes you
need to think through an example to make it
clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human, turning
them into a zombie. If we start with just one
zombie, how long does it take for the whole world
(7.5 billion people) to turn into zombies?

We'll need to track and update two variables- one
for the number of zombies, one for the number of
days passed.

Loop control variable: # of zombies
Start value: 1 zombie
Continuing condition: while the number of zombies
is less than the population
Update action: double the number of zombies every
day

zombieCount = 1

population = 7.5 * 10**9

daysPassed = 0

while zombieCount < population:

 daysPassed = daysPassed + 1

 zombieCount = zombieCount * 2

print(daysPassed)

27

Loop Control Variables – Another Example

Example: how would you count the number of
digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1

or

a*102 + b*101 + c*100

Check each power of 10 until one is bigger than
the number. A separate variable can track the
actual number of digits counted.

Loop control variable: which power of 10 is being
checked
Start value: 1 (100)
Continuing condition: while the power of 10 isn't
greater than the number
Update action: multiply the power by 10

num = 2021

power = 1

digits = 0

while power < num:

 digits = digits + 1

 power = power * 10

print(digits)
28

Loop Control Variables – Another Example

Another answer: instead of comparing a
power of 10 to the number, change the
number itself.

For example, to count the digits in abc,
change:

abc ->

ab ->

a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet 0 (no digits)
Update action: divide the number by 10

num = 2021

digits = 0

while num > 0:

 digits = digits + 1

 num = num // 10

print(digits)

29

