While Loops

15-110 - Friday 09/13

Announcements

* Check2 due Monday at noon

* You're encouraged to attend small group sessions to get help with learning the
course content. In particular, the TAs will provide more help than usual on one of the
Hw?2 problems in small group sessions next week (drawIllusion). Contact your TA

to learn more!
* Check1l/Hw1 revision deadline: Tuesday 09/17 noon

- If you want to update your submission based on feedback, just make the
changes to your solution and resubmit (applies to exercises too!)

- TAs will regrade within a week, usually

- Note that revision submissions are capped at 90 points — don't resubmit if you
already scored a 90 or above. (Still look at your feedback, though!)

Learning Goals

* Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update
actions for loop control variables

* Translate algorithms from control flow charts to Python code

» Use nesting of statements to create complex control flow

Repeating actions is messy.

Let's write a program that prints out the numbers from 1 to 10.
Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

A loop is a control structure that lets us repeat actions so that
we do not need to write out similar code over and over again.

same

Loops are powerful when we ‘ - A
want to repeat a pattern. prin t (1)
orint(2)

|dentify the parts of the pattern .

that are the same and the parts prant (3)
that are different. orint(4)
orint(5)
v

different

While Loops

A while loop is a type of loop that keeps repeating only while a
certain condition is True.

while <booleanExpression>:

<loopBody>
i=1
while i <= 5:
indentation —»~ Pri”t(i)l
(tab) 1=1

while is how Python knows this is a while loop
¢ and indentation is start of while loop body

The wh1 le statement body must become False for the loop
to end.

1)— i =1

(2)—» while 1 <= 5: <+—(5) <+—(8)

(3)—» print(i) <+—(6) «—(9)

&) —> Pl e—(1)
print("done")

Check this out on pythontutor.com.

https://pythontutor.com/render.html#code=i%20%3D%201%0Awhile%20i%20%3C%3D%2010%3A%0A%20%20%20%20print%28i%29%0A%20%20%20%20i%20%3D%20i%20%2B%201%0Aprint%28%22done%22%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

A wh1 Le loop with a condition that does not become False is
an infinite loop.

i =1
while 5 > 0: Hit the STOP button in
: . @ Thonny to stop an infinite
print(i) loop!

1 =1+ 1

1f Flow Chart

i =1

if 1 <= 5:
print(i)
1T =1 + 1

print("done")

print("done")

False

10

while Loop Flow Chart

Unlike an 1 statement, a whi le loop
flow chart needs to include a

transition from the whi Le loop's body
back to itself.

- False

i=1
while i <= 5:

y

print(i)
=1+ 1

|
|
|
I print("done")
|
|
|

print("done")

loop body

11

Activity: Trace the Program

You do: if we slightly change the code from the previous
program, what happens to the program?

1 =1

while 1 <= 5:
1 =1 + 1 # moved up one Lline
print(i)

print("done")

12

Loop Control Variables

To design algorithms with loops, we need to identify what needs
to change each iteration by creating a loop control variable.

A loop control variable needs three things to work correctly: start
value, continuing condition, update action

Algorithm: Print numbers 1 to 10 (inclusive)

_ num = 1
control variable: num

start value: 1
continuing condition: num <= 10 print(num)
update action: num = num + 1 num = num + 1

while num <= 10:

To count backwards we change the start value, continuing
condition, and update action of the loop control variable.

Algorithm: Print numbers 10 to 1 (inclusive)

control variable: num num = 16

start value: 10 while num >= 1:
continuing condition: num >= 1 print(num)
update action: num = num - 1 um = num - 1

Activity: Print Even Numbers

You do: your task is to print the even numbers from 2 to 100
(inclusive).

What is your loop control variable? What is its start value,
continuing condition, and update action?

Once you've determined what these values are, use them to
write a short program that does this task.

Loops in Algorithms

We can update additional variables inside a loop body to
implement more complex algorithms.

Algorithm: Add the numbers

result = ©
from 1 to 10
num = 1
Need to keep track of two while num <= 10:
numbers: result = result + num
o the current number we are
adding num = num + 1
« the current sum print(result)

Which is the loop control
variable?

It is important to be able to trace loops to understand (and
debug!) what a program is doing at the end of each iteration.

result num
result = 0 before loop |0 1
num = 1 iteration 1 1 2
. iteration 2 3 3
while num <= 7: iteration 3 6 4
result = result + num iteration4 | 10 5
num = num + 1 iteration 5 15 6
iteration 6 21 7
print(result) iteration7 | 28 8
after loop 28 8

Order matters when updating variables and Python only

checks the loop condition at then end of each iteration.

result = 0
num = 1
while num <= 7:

num num + 1
result = result + num

print(result)

result num
before loop 0 1
iteration 1 2 2
iteration 2 5 3
iteration 3 9 4
iteration 4 14 5
iteration 5 20 6
iteration 6 27 7
iteration 7 35 8
after loop 35 8

We can nest conditionals in whi Le loops, putting conditions
on control variables.

Algorithm: (printing patterns) row = 0

Write code to produce the : .

fO”OWing while row < 5:

X=X —X if row % 2 ==
-0-0- print("x-x-x")
X—X—X else:

—0—0- print("-o-o-")
X=X=X row = row + 1

If the control variable is even,
print X, if odd print o.

We can nest wh1 Le loops in functions.

If we return inside a loop,
Python immediately exits the
function — no further iterations
will run.

Algorithm: Check whether a
multiple of num occurs within a
certain range [start, end]

def multipleInRange(start, end, num):

i = start
while i <= end:
print(i) #
if 1 % num
return
=1+ 1

return False

shows loop ends early
== 0:

True

Coding with Multiple Data Points

Now that we have loops, we can start writing algorithms to solve

real-world problems. For example, we often want to analyze multiple
data points while writing code.

Loops make it possible for us to repeat an action multiple times- that
should make it possible for us to get multiple data points. But how
can we receive that data?

For now, we'll use the 1nput built-in function to repeatedly ask the
user for data. Later we'll learn about a new data type that can store
multiple values in one place.

Looping with input

If we call input inside the loop result = @

body, we can get multiple inputs . . -
fron¥the usergand proc%ss thpem value = input("Enter a number, or q to quit:")

like a data stream. while value != "g":

num = int(value)
We'll need to give the user a

way to signal that they're done result = result + num

entering numbers. This can by value = input("Enter a number, or q to quit:")
fcjl’?engt\r/\ilrgt; 'aqslpeCIaI input, like print("Total sum:", result)

For example, this code sums the Note: our loop control variable here is value. It

ngl?cﬁresyes?éﬁ;el%Eéﬁgetgi%; starts as a user input, is updated by asking for new

numbers. input, and continues looping while it is not "q".

24

Learning Goals

* Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update
actions for loop control variables

* Translate algorithms from control flow charts to Python code

» Use nesting of statements to create complex control flow

Extra Slides:
Advanced Loops in Algorithms

This content will not be tested, but is interesting to know!

It isn't always obvious how the start values, Loop control variable: # of zombies
continuing conditions, and update actions of a Start value: 1 zombie

loop control variable should work. Sometimes you - ¢4 ntinuing condition: while the number of zombies
need to think through an example to make it is less than the population

lear! i '
Clear Update action: double the number of zombies every
day

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human, turning :
them into a zombie. If we start with just one zombieCount = 1

zombie, how long does it take for the whole world population = 7.5 * 10%*9

o \ oo
(7.5 billion people) to turn into zombies: daysPassed = ©

while zombieCount < population:

We'll need to track and update two variables- one daysPassed = daysPassed + 1
for the number of zombies, one for the number of . .
days passed. zombieCount = zombieCount * 2

print(daysPassed)

27

Example: how would you count the number of
digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1
or
a*10% + b*10! + c*10°

Check each power of 10 until one is bigger than
the number. A separate variable can track the
actual number of digits counted.

Loop control variable: which power of 10 is being
checked

Start value: 1 (109)

Continuing condition: while the power of 10 isn't
greater than the number

Update action: multiply the power by 10

num = 2021
power = 1
digits = ©

while power < num:
digits = digits + 1
power = power * 10

print(digits)

28

Another answer: instead of comparing a
power of 10 to the number, change the
number itself.

For example, to count the digits in abc,
change:

abc ->
ab ->
a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet O (no digits)

Update action: divide the number by 10

num = 2021
digits = 0
while num > O:
digits = digits + 1
num = num // 10
print(digits)

29

