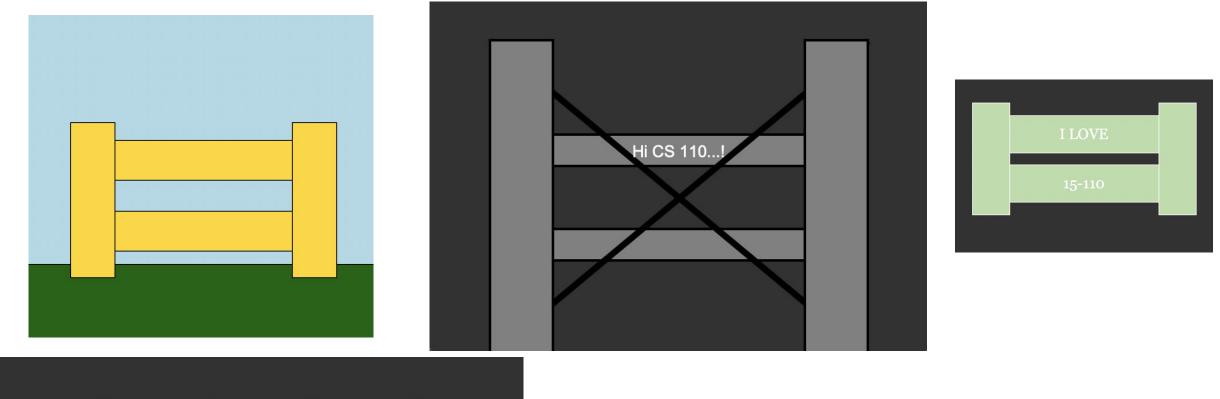
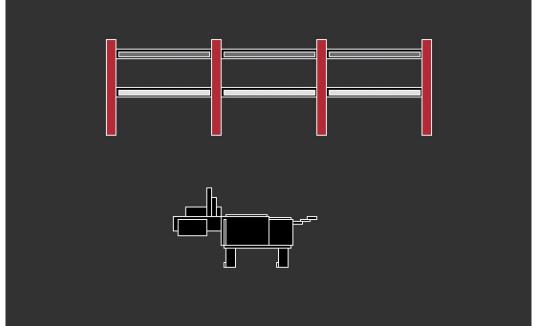
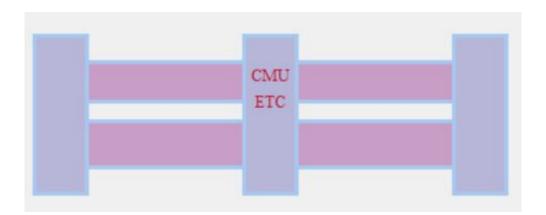

Hw1 – Awesome Fences!







Announcements

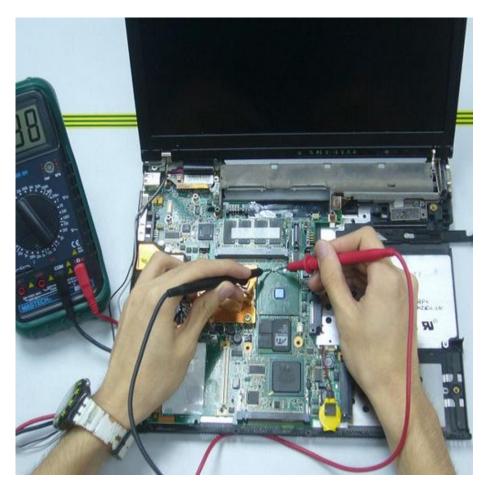
- Hw1 feedback released
 - Make sure to view programming feedback!
 - Tutorial on website
- For check2 and beyond, look at your autograder feedback!
 - Start early, work through sections right after we cover new material

Quizlet

Circuits and Gates

15-110 - Wednesday 09/11

Learning Goals

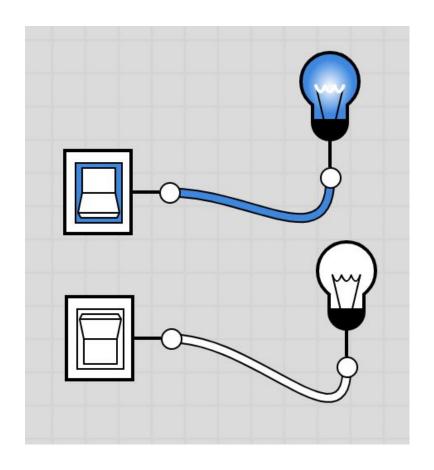

Translate Boolean expressions to truth tables and circuits

Translate circuits to truth tables and Boolean expressions

 Recognize how addition is done at the circuit level using algorithms and abstraction All the operations we perform on a computer correspond to physical actions within the **hardware** of the machine.

Software: the abstracted concepts of computation- how computers represent data, and how programs can manipulate data.

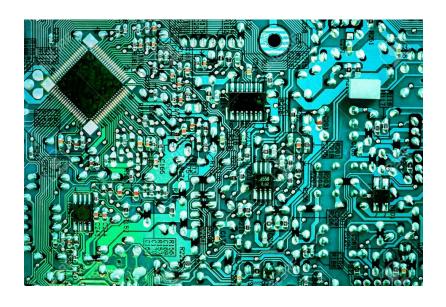
Hardware: the actual physical components used to implement software, like the laptop components shown to the right.

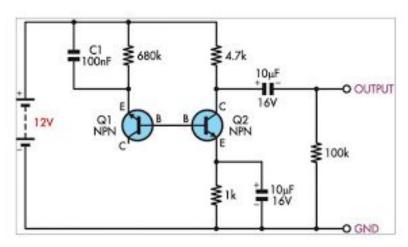


In hardware, bits are represented as electrical voltage.

A high level of voltage is considered a 1.

A low level of voltage is considered a **0**.

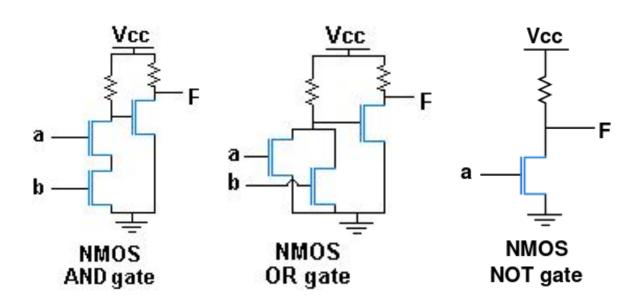

By redirecting electrical flow throughout a system, we can change the values of data in hardware.



The computer uses circuits to perform computational actions.

Circuits redirect electricity to different parts of hardware.

We will discuss how to use gates, which are abstracted circuit components. Every gate we discuss can be directly translated to a real hardware circuit.


Logical Gates

Our three basic logical operators (and, or, not) can be represented as gates in real hardware. 1 is True and 0 is False.

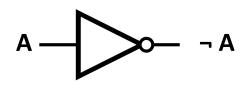
AND gate takes two inputs and outputs 1 if both inputs are 1

OR gate takes two inputs and outputs 1 if either inputs are 1

NOT gate takes one inputs and outputs the reverse, 1 becomes 0 and 0 because 1

We will use **special symbols** to represent building circuits with these gates:

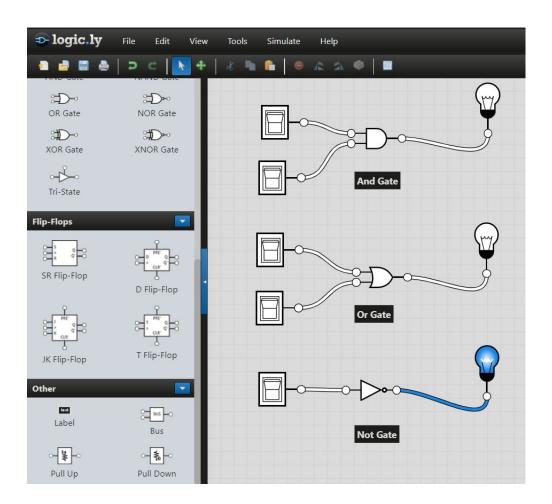
AND gate takes two inputs and outputs 1 if both inputs are 1



Α	В	ΑΛВ
1	1	1
1	0	0
0	1	0
0	0	0

OR gate takes two inputs and outputs 1 if either inputs are 1

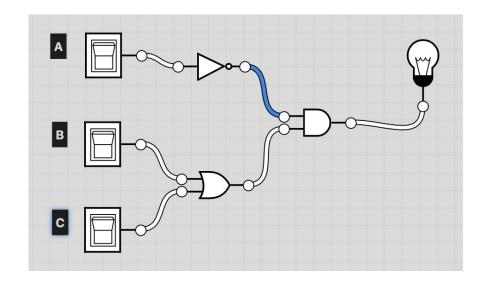
Α	В	AVB
1	1	1
1	0	1
0	1	1
0	0	0


NOT gate takes one inputs and outputs the reverse, 1 becomes 0 and 0 because 1

Α	¬ A
1	0
0	1

When working with gates, it can help to simulate a circuit using the gates to investigate how they work.

There are lots of free online circuit simulators. We'll use this one: https://logic.ly/demo



Algorithms with Gates

We can combine gates together in different orders to achieve different results. This lets us **build algorithms using gates**.

When we want to represent an algorithm that uses gates, we can use one of three different representation formats:

Circuit

Truth Table

Α	В	C	Output
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	0

Boolean expression

We can use truth tables to show all the possible inputs and outputs of expressions.

All possibilities for the expression A $\vee \neg B$

Inputs		Outputs	
Α	В	¬В	A∨¬B
1	1	0	1
1	0	1	1
0	1	0	0
0	0	1	1

As a Boolean expression: A or (not B)

With truth tables we can break down complex expressions into smaller parts and give each part its own column.

(A \wedge B \wedge C) \vee (A \wedge ¬B \wedge ¬C) \vee (¬A \wedge B \wedge ¬C) \vee (¬A \wedge ¬B \wedge C)

Inputs		ts	Outputs				
A	В	С	АЛВЛС	A ∧ ¬B ∧ ¬C	¬A ∧ B ∧ ¬C	¬А ∧ ¬В ∧ С	$(A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land C)$
1	1	1	1	0	0	0	1
1	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0
1	0	0	0	1	0	0	1
0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	1
0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0

Boolean Expressions, Circuits, and Truth Tables can all be used to represent the **same algorithm**.

Boolean Expressions:

Good for quickly representing an algorithm in text

Circuits:

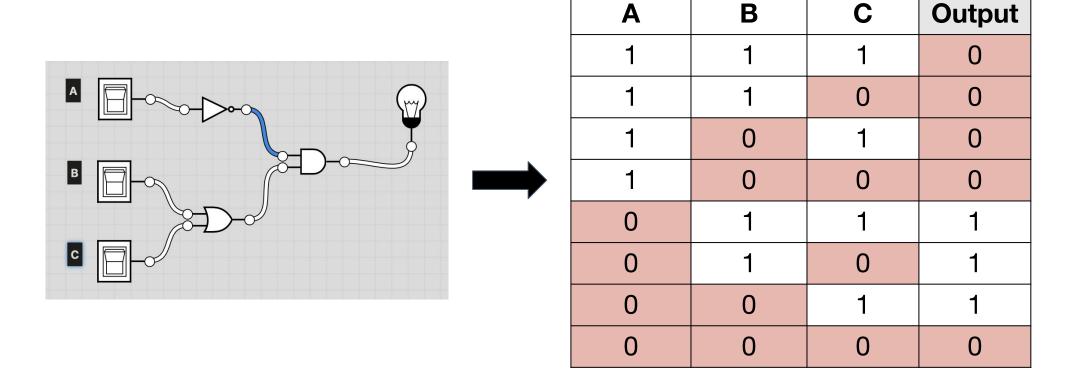
A more visual option, and more interactive

Truth Tables:

Lay out all inputs and outputs, which helps derive algorithms

Truth table -> Boolean expressions

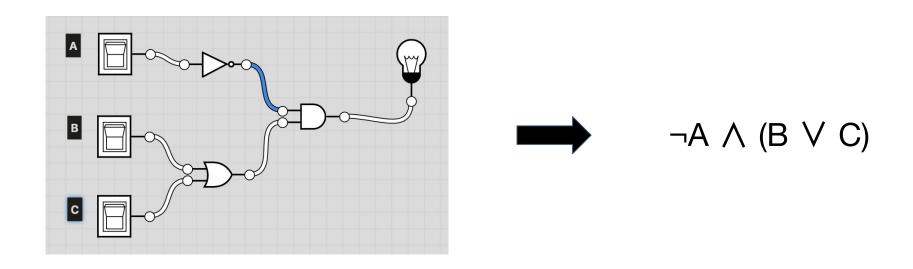
We can use a truth table to **derive** a Boolean expression from a set of inputs and outputs.


This is too complex for this class!

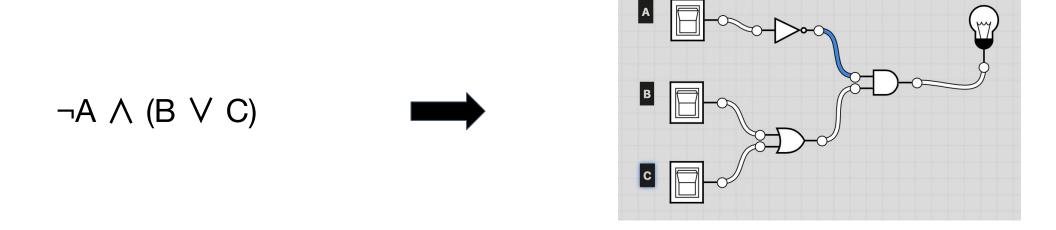
Α	В	С	??
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	0

Circuit -> Truth table

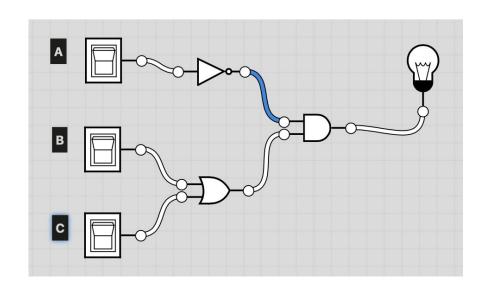
Given a circuit, we can construct a truth table either by logically determining the result, or by simulating all possible input


combinations.

B


Circuits -> Boolean expression

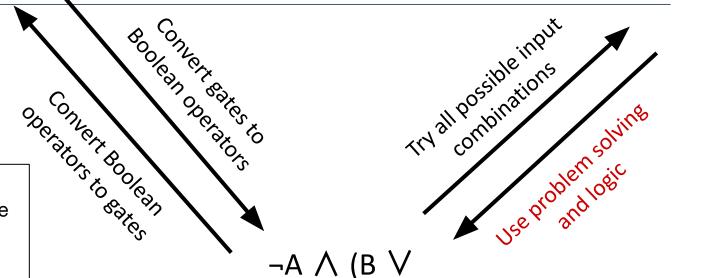
We can find the equivalent Boolean expression by translating gates to Boolean operators.



Boolean expression -> circuit

We can also go in the opposite direction.

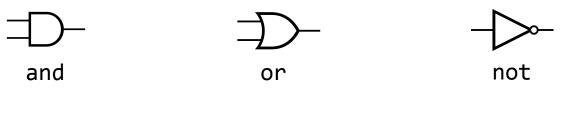
Conversion Chart

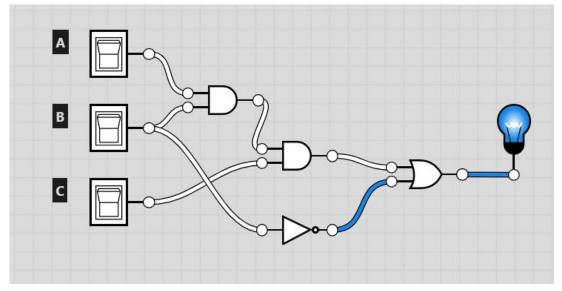


Try all possible input combinations

Use problem solving and logic

Α	В	С	Output
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	0


In this class, we **will not require** you to do conversions that require complex problem solving and logic!



Activity: Find the positive inputs!

Convert the following circuit to the equivalent Boolean Expression, then write the equivalent truth table.


Which input combinations will result in the circuit outputting 1 (the light bulb lighting up)?

There are more gates that can simplify complex circuits:

NAND gate takes two inputs and outputs 1 if both inputs are **not** 1

Α	В	¬ (A ∧ B)
1	1	0
1	0	1
0	1	1
0	0	1

NOR gate takes two inputs and outputs 1 if both inputs are 0

XOR gate takes two inputs and outputs 1 if one input 1 and the other is 0:

$$(A \land \neg B) \lor (\neg A \land B)$$

Α.	#_	A⊕B
В .		AVD

A	В	¬ (A V B)
1	1	0
1	0	0
0	1	0
0	0	1

Α	В	A & B
1	1	0
1	0	1
0	1	1
0	0	0

Abstraction with Gates

We can write real algorithms with circuits.

We'll focus on a basic action that computers do all the time: integer addition.

How do we add two one-bit numbe the po

•	•		
1	0	01	
0	1	01	
0	0	00	
	1 0 0	1 0 0 0 0 0	1 0 01 0 1 01 0 0 00

X

In binary:

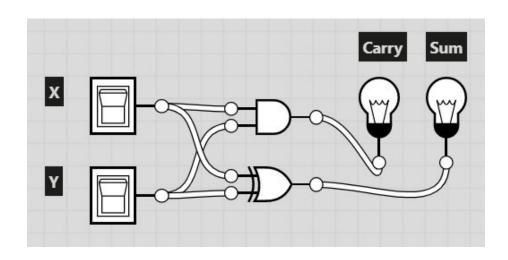
$$1 + 1 = 10$$

We need two bits to store the result!

X + Y

We implement single-bit addition with gates using a half adder.

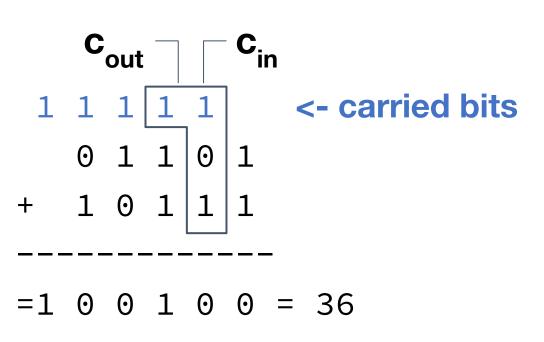
We need **two bits** to hold the result which we call:


$$1 + 1 = \boxed{1} \boxed{0}$$
carry bit sum bit

Sum bit is an **XOR** gate and carry is an **AND** gate.

X	Υ	X+Y
1	1	10
1	0	01
0	1	01
0	0	00

Carry	Sum
1	0
0	1
0	1
0	0

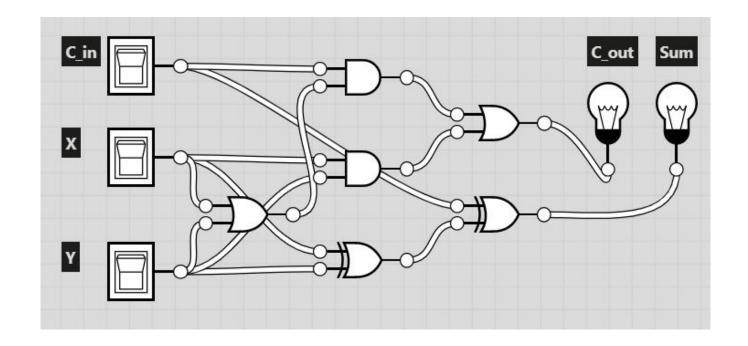

ХЛҮ	X ⊕ Y
1	0
0	1
0	1
0	0

To handle numbers with multiple bits, we might need to carry an output over to the next column of the addition.

For the two's column on the right, call the carried-in bit C_{in} and next carry C_{out}.

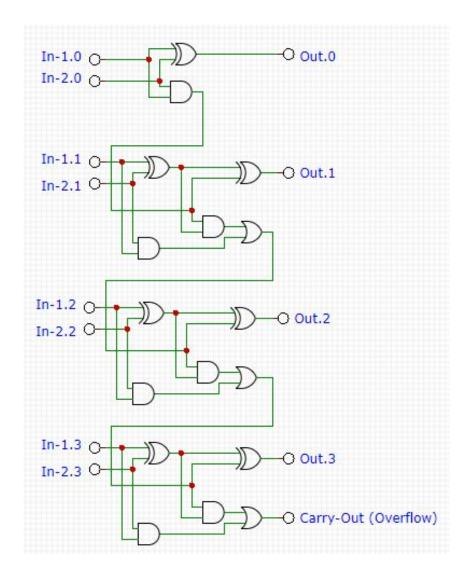
We need to modify our half-adder to have a third input C_{in} and update the computations for Carry (C_{out}) and Sum.

We implement multiple-bit addition with gates using full adders.


We now have 3 inputs:

C_{in}, X, and Y

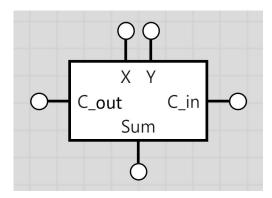
And 2 outputs:

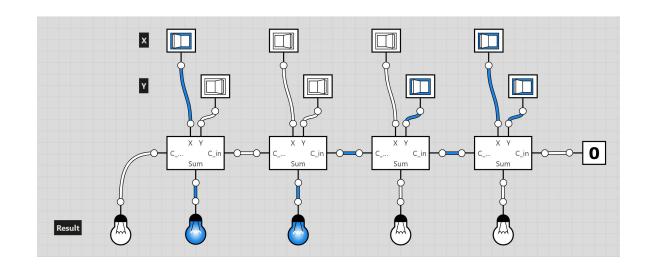

C_{out} is equivalent to:

$$((X \lor Y) \land C_{in}) \lor (X \land Y)$$

Sum is equivalent to:

We can implement an N-bit by chaining together full adders.

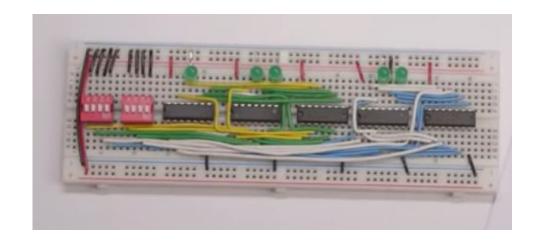



Using abstraction, we can represent full adders as a box.

The box holds the Full Adder circuit within it, but it doesn't need to bother with all the internal components.

Let's try it out: What's 9 + 3?

- 9 is 8+1=1001, 3 is 2+1=0011
- Walk through the full adders...
- The output is 1100=8+4
- That's 12! It works!



Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've designed to build an **actual hardware circuit** that does 4-bit addition (or more!).

See a demo of what that looks like here:

https://youtu.be/wvJc9CZcvBc?t=7
42

Learning Goals

Translate Boolean expressions to truth tables and circuits

Translate circuits to truth tables and Boolean expressions

 Recognize how addition is done at the circuit level using algorithms and abstraction