
Hw1 – Awesome Fences!

1



2



Announcements

• Hw1 feedback released
• Make sure to view programming feedback!
• Tutorial on website

• For check2 and beyond, look at your autograder feedback!
• Start early, work through sections right after we cover new material

3



Quizlet

4



Circuits and Gates
15-110 – Wednesday 09/11

5



Learning Goals

•Translate Boolean expressions to truth tables and circuits

•Translate circuits to truth tables and Boolean expressions

•Recognize how addition is done at the circuit level using 
algorithms and abstraction

6



All the operations we perform on a computer correspond to 
physical actions within the hardware of the machine. 

Software: the abstracted 
concepts of computation- how 
computers represent data, and 
how programs can manipulate 
data.

Hardware: the actual physical 
components used to implement 
software, like the laptop 
components shown to the right.

7



In hardware, bits are represented as electrical voltage.

A high level of voltage is 
considered a 1.
A low level of voltage is 
considered a 0.

By redirecting electrical flow 
throughout a system, we can 
change the values of data in 
hardware.

8



The computer uses circuits to perform computational actions.

Circuits redirect electricity to 
different parts of hardware.

We will discuss how to use 
gates, which are abstracted 
circuit components. Every gate 
we discuss can be directly 
translated to a real hardware 
circuit.

9



Logical Gates

10



Our three basic logical operators (and, or, not) can be 
represented as gates in real hardware. 1 is True and 0 is 
False.

AND gate takes two inputs and 
outputs 1 if both inputs are 1    

OR gate takes two inputs and 
outputs 1 if either inputs are 1    

NOT gate takes one inputs and 
outputs the reverse, 1 becomes 
0 and 0 because 1    

11



We will use special symbols to represent building circuits with 
these gates:

A
B

A ∧ B

A
B A ∨ B

A ¬ A

A B A ∧ B

1 1 1

1 0 0

0 1 0

0 0 0

AND gate takes two inputs and 
outputs 1 if both inputs are 1    

OR gate takes two inputs and 
outputs 1 if either inputs are 1    

NOT gate takes one inputs and 
outputs the reverse, 1 becomes 
0 and 0 because 1    

A B A ∨ B

1 1 1

1 0 1

0 1 1

0 0 0

A ¬ A

1 0

0 1

12



When working with gates, it can help to simulate a circuit using 
the gates to investigate how they work.

There are lots of free online 
circuit simulators. We'll use this 
one: https://logic.ly/demo

13

https://logic.ly/demo


Algorithms with Gates

14



We can combine gates together in different orders to achieve 
different results. This lets us build algorithms using gates.

When we want to represent an algorithm that uses gates, we can use 
one of three different representation formats: 

¬A ∧ (B ∨ 
C)

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

Circuit Truth Table Boolean expression

15



We can use truth tables to show all the possible inputs and 
outputs of expressions.

All possibilities for the expression A ∨ ¬B

As a Boolean expression: A or (not B)

Inputs Outputs

A B ¬B A ∨ ¬B

1 1 0 1

1 0 1 1

0 1 0 0

0 0 1 1

16



With truth tables we can break down complex expressions 
into smaller parts and give each part its own column.

Inputs Outputs

A B C A ∧ B ∧ C A ∧ ¬B ∧ 
¬C

¬A ∧ B ∧ 
¬C

¬A ∧ ¬B ∧ 
C

(A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ 
¬B ∧ C) 

1 1 1 1 0 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 1

0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 0

(A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ 
C) 

17



Boolean Expressions, Circuits, and Truth Tables can all be used 
to represent the same algorithm.

Boolean Expressions: 
Good for quickly representing an algorithm in text

Circuits: 
A more visual option, and more interactive

Truth Tables: 
Lay out all inputs and outputs, which helps derive algorithms

18



Truth table -> Boolean expressions 

We can use a truth table to derive a Boolean expression from a set 
of inputs and outputs.

This is too complex for this class!
A B C ??

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

19



Circuit -> Truth table

Given a circuit, we can construct a truth table either by logically 
determining the result, or by simulating all possible input 
combinations.

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

20



Circuits -> Boolean expression

We can find the equivalent Boolean expression by translating gates 
to Boolean operators.

¬A ∧ (B ∨ C)

21



Boolean expression -> circuit

We can also go in the opposite direction.

¬A ∧ (B ∨ C)

22



Conversion Chart

23¬A ∧ (B ∨ 
C)

Try all possible input 
combinations

Use problem solving 
and logic

Use
 pro

blem
 so

lvi
ng 

and lo
gic

Try
 all p

oss
ible in

put 

co
m

binatio
ns

Convert gates to 

Boolean operators

Convert Boolean 

operators to gates

A B C Output

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

In this class, we will not require 
you to do conversions that require 
complex problem solving and 
logic!



Activity: Find the positive inputs!

Convert the following circuit to 
the equivalent Boolean 
Expression, then write the 
equivalent truth table.

Which input combinations will 
result in the circuit outputting 1 
(the light bulb lighting up)?

and or not

24



There are more gates that can simplify complex circuits:
A B ¬ (A ∧ B)

1 1 0

1 0 1

0 1 1

0 0 1

NAND gate takes two inputs 
and outputs 1 if both inputs are 
not 1    

NOR gate takes two inputs and 
outputs 1 if both inputs are 0    

XOR gate takes two inputs and 
outputs 1 if one input 1 and the 
other is 0:

 (A ∧ ¬B) ∨ (¬A ∧ B)
   

A B ¬ (A ∨ 
B)

1 1 0

1 0 0

0 1 0

0 0 1

A ⊕ BA
B

A
B

¬ (A ∧ B)

A
B ¬ (A ∨ B)

A B A ⊕ B

1 1 0

1 0 1

0 1 1

0 0 0

25



Abstraction with Gates

26



We can write real algorithms with circuits.

We'll focus on a basic action that 
computers do all the time:          
integer addition.
How do we add two one-bit 
numbers, X and Y? What are all 
the possible inputs and outputs?

In binary:
1 + 1 = 10

X Y X + Y
1 1 10
1 0 01
0 1 01
0 0 00

We need two bits to store the result!

27



We implement single-bit addition with gates using a half adder.

We need two bits to hold the 
result which we call:

1 + 1 = 1 0

carry bit sum bit

X Y X+Y

1 1 10

1 0 01

0 1 01

0 0 00

Carry Sum

1 0

0 1

0 1

0 0

X ∧ Y X ⊕ Y

1 0

0 1

0 1

0 0

Sum bit is an XOR gate and carry 
is an AND gate.

28



To handle numbers with multiple bits, we might need to carry an 
output over to the next column of the addition. 

For the two's column on the right, 
call the carried-in bit Cin and 
next carry Cout.

We need to modify our half-adder 
to have a third input Cin and 
update the computations for 
Carry (Cout) and Sum.

 1 1 1 1 1    <- carried bits
   0 1 1 0 1
+  1 0 1 1 1
-------------
=1 0 0 1 0 0 = 36

cout cin

29



We implement multiple-bit addition with gates using full adders.

We now have 3 inputs:
Cin, X, and Y

And 2 outputs:
Cout is equivalent to: 
((X ∨ Y) ∧ Cin) ∨ (X ∧ Y)

Sum is equivalent to: 
(X ⊕ Y) ⊕ Cin

30



We can implement an N-bit by chaining together full adders.  

31



Using abstraction, we can represent full adders as a box.

The box holds the Full Adder 
circuit within it, but it doesn't 
need to bother with all the 
internal components.

Let's try it out: What's 9 + 3?
• 9 is 8+1=1001, 3 is 2+1=0011
• Walk through the full adders...
• The output is 1100=8+4
• That's 12! It works!

32



Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit 
we've designed to build an actual 
hardware circuit that does 4-bit 
addition (or more!).

See a demo of what that looks like 
here: 
https://youtu.be/wvJc9CZcvBc?t=7
42

33

https://youtu.be/wvJc9CZcvBc?t=742
https://youtu.be/wvJc9CZcvBc?t=742


Learning Goals

•Translate Boolean expressions to truth tables and circuits

•Translate circuits to truth tables and Boolean expressions

•Recognize how addition is done at the circuit level using 
algorithms and abstraction

34


