
Booleans, Conditionals,
and Errors

15-110 – Monday 09/09

1

Announcements

• Hw1 was due today
• Start homeworks early!

• Check2 now released, HW2 coming out on Wednesday
• Note that Check2 has written and programming components!

• Quizlet1 is on Wednesday

• Go to recitation; it contains material that won’t be in the slides!

2

Quizlets
• There are 8 quizlets throughout the semester on Wednesdays

− Lowest two scores dropped

• Procedure:

− Bring a full-sized piece of paper (printer paper preferred)

− You’ll have 5 minutes to answer the question displayed on the screen

− No computers, phones, notes, or collaboration etc.

− When time is up, you must stop writing immediately and hand all
papers face-down to the nearest aisle

• You must be silent during the quizlet and while it is being collected. You
also must not talk to anyone about the quizlet until it has been graded and
released.

3

Learning Goals

•Use logical operators on Booleans to compute whether an
expression is True or False

•Use conditionals when reading and writing algorithms that
make choices based on data

•Use nesting of control structures to create complex control
flow

•Recognize the different types of errors that can be raised when
you run Python code

5

Logical Operators

6

Python can evaluate whether certain expressions are true or
false. These types of values are called Booleans.

Booleans are either True or False

We get a Boolean when we do a comparison with comparison
operators:

>> “Hello” == “World”
False

less than < greater than >

less or equal <= greater or equal >=

equal ==

not equal !=

7

We can combine boolean values using logical operators.

or or not not and and

Combining Boolean values will let us check complex requirements
while running code.

(x > 5) or ((x**2 > 50) and (x == 20))

8

and operator takes two Boolean values and evaluates to True if
both values are True.

We use and when we require that both conditions be met at the
same time.

a b a and b
True True True
True False False
False True False
False False False

We use true tables to show the output for a boolean expression
given all possible inputs.

9

or operator takes two Boolean values and evaluates to True if
either value is True.

We use or when there are multiple valid conditions to choose
from.

a b a or b
True True True
True False True
False True True
False False False

10

not operator takes a Boolean value negates it, switching it to
the opposite value.

We use not to switch the result of a Boolean expression.

a not a
True False
False True

11

Activity: Guess the Result

If x = 10, what will each of the following expressions evaluate
to?

x < 25 or x > 15

not (x > 5 and x <= 10)

(x > 5) or ((x**2 > 50) and (x == 20))

12

Conditionals

13

Conditionals are a control structure: they let us make
decisions based on boolean expressions.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:
 <bodyIfTrue>

indentation
(tab)

if is how Python knows this is an if statement
: and indentation is start of if statement body

14

We will use a flowchart to demonstrate how Python executes
an if statement based on the values provided.

print("hello")
if x < 10:
 print("wahoo!")
print("goodbye")

wahoo! is only printed if x is
less than 10. But hello and
goodbye are always printed.

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

15

Example: Print Number of Digits

For example, we could use the following code to print whether
a number has one digit or more than one digit:

x = 24
if -10 < x and x < 10:
 print("Only one digit")
if x <= -10 or x >= 10:
 print("More than one digit")

16

If we want a program to do one of two alternative actions
based on a condition we can write an else statement.

In this case, instead of writing two if statements, we can write a
single if statement and add an else.

The else is executed when the Boolean expression is False.

if clause

else clause

}
}

17

Updated Flow Chart Example

print("hello")
if x < 10:
 print("wahoo!")
else:
 print("ruh roh")
print("goodbye")

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

18

Revised Example: Print Number of Digits

Using an else statement makes our earlier code much easier to
write and understand!

x = 24
if -10 < x and x < 10:
 print("Only one digit")
else:
 print("More than one digit")

19

Activity: Conditional Prediction

Prediction Exercise: What will the following code print?

x = 5
if x > 10:
 print("Up high!")
else:
 print("Down low!")

Question: Can we change the value of x to print the other string instead?

Question: Can we change the value of x to make the if/else statement
print out both statements?

20

We can use elif statements to add alternatives with their
own conditions to if statements.

An elif is like an if, except that it is checked only if all previous
conditions evaluate to False.

if clause

elif clause

}
}

else clause}

21

Updated Flow Chart
Example
print("hello")

if x < 10:

 print("wahoo!")

elif x <= 99:

 print("meh")

else:

 print("ruh roh")

print("goodbye")

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True False

True False

print
'meh'

if x < 10

if x <= 99

22

A conditional statement is a joined group of if, elif, and
else.

All conditional statements have:
● Exactly one if clause
● Followed by zero or more elif clauses
● Followed by zero or one else clause(s)

It must start with an if. You cannot have an elif or else without
an if.

These joined clauses can be considered a single control structure:
only one clause will execute!

23

Example: Grade Calculator

Let's write a few lines of code that takes a grade as a number,
then prints the letter grade that corresponds to that number
grade.

90+ is an A,
80-90 is a B,
70-80 is a C,
60-70 is a D,
and below 60 is an R.

24

Short-circuit evaluation is when Python does not evaluate
the second part of a boolean expression because it logically
does not need to.

When checking x and y, if x is
False, the expression can
never be True. Therefore,
Python doesn't even evaluate
y.

When checking x or y, if x is
True, the expression can never
be False. Python doesn't
evaluate y.

a b a and b

True True True

True False False

False True False

False False False

a b a or b

True True True

True False True

False True True

False False False
25

Short-circuit evaluation is handy for keeping errors from
happening!

if type(x) == type(y) and x < y:
 print(“Smaller:”, x)

if x != 0 and 10 / x:
 print(x, “is not 0”)

26

There are two math operators that are handy for checking if
numbers have certain properties: mod % and div //

modulo %

integer divide //

Finds the remainder when one number is
divided by another.

Divides numbers by rounding down to nearest
whole number. This cuts off any digits after
the decimal point.

Check if a number is even with x % 2 == 0.

Cut off the last digit of a number with x // 10.

27

Nesting Control Structures

28

We can nest control structures inside of other control
structures.

Example: We can put if statements inside of if statements.
if age >= 26:

 if license == True:

 print("Rental Approved")

 else:

 print("Rental Denied: Invalid License”)

else:

 print("Rental Denied: Must be at least 26 years old")

In program syntax, we demonstrate that a control structure is
nested by indenting the code so that it is in the outer control
structure's body.

29

Example: Car rental program

Consider code that determines if a person can rent a car
based on their age (are they at least 26) and whether they
have a driver's license.

We can use one if statement to check their age,
then a second (nested inside the first) to check
he license. We'll only print 'Rental Approved'
if both if conditions evaluate to True.

if age >= 26:
 if license == True:
 print("Rental Approved")
 else:
 print("Rental Denied: Invalid License”)
else:
 print("Rental Denied: Must be at least 26 years old")

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True

Falseif license == True

if age >= 26

Note that each else is paired with
the if at the same indentation level. 30

When we nest a conditional inside a function definition, we
can return values early instead of only returning on the last line.

For example, the following function will not crash when n is zero:

def findAverage(total, n):
 if n <= 0:
 return -1 # error code
 return total / n

A function will always end as soon as it reaches a return
statement, even if more lines of code follow it.

33

Python Errors

35

Errors happen when syntax is not valid Python code.

>> Print(“Hello World”)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'Print' is not defined

>> print “Hello World”
 File "<stdin>", line 1
 print "Hello World"
 ^^^^^^^^^^^^^^^^^^^
SyntaxError: Missing parentheses in call to
'print'. Did you mean print(...)?

36

There are 3 kinds of errors:

Syntax Errors: When code does not follow Python grammar rules
print(1,2

Runtime Errors: When code crashes during program execution
print(1/0)

Logical Errors: When code runs but output is not what we expect
def printHello():

print(“Goodbye”)

37

The programming language's syntax is a set of rules for how
code instructions should be written.

When Python executes your code, it first has to break your text
down into tokens, then structure those tokens into a format that the
computer can execute.

A syntax error occurs when the interpreter runs into an error while
tokenizing or structuring, the code does not follow Python
language’s syntax rules.

A syntax error means that none of your code will run, because the
syntax can't be parsed.

38

Most syntax errors are called SyntaxError, which make them
easy to spot.

x = @ # @ is not a valid token
4 + 5 = x # the parser stops because it doesn't follow the rules

There is a special type of syntax error: IndentationError

 x = 4 # IndentationError: whitespace has meaning
if x > 4: # IndentationError: missing if statement body

39

If an error occurs as the code is being executed, it's called a
runtime error.

After Python tokenizes and structures the code, the interpreter runs
through the control flow of the program line-by-line.

Runtime errors have many different names in Python. Examples:

print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

41

What's the difference between syntax and runtime errors?

Syntax errors: Python cannot correct parse the syntax of the text,
so none of the code will run.

Runtime errors: Python parses the code and starts to run, but gets
to a point where the code cannot be computed. Anything after the
non-working code will not run.

42

The third kind of error: Logical errors can occur if code runs
but produces a result that was not what the user intended.

The computer cannot catch logical errors because the computer
doesn't know what we intend to do!

To catch logical errors, you need to test your code. We will do this
with assert statements.

43

We use assert statements to check for logical errors by
testing whether the output of a function call is equal to what we
expect it to be.

An assert statement takes a Boolean expression. If the expression
evaluates to True, the statement does nothing. If it evaluates to
False, the program crashes with an AssertionError.

assert(findAverage(20, 4) == 5)

44

Logical errors are the hardest to find and fix. You'll learn more
about how to debug them in recitation this week.

print("2 + 2 = ", 5) # no error message, but wrong!

def double(x):
 return x + 2 # adding instead of multiplying

assert(double(3) == 6) # 6 is the intended result

45

Demo: Programming Starter File

Starting in Check2, the programming starter files will contain test cases that use
assert statements.

To run all the tests, click the Run current script button. This will run the whole file
and call testAll() at the bottom, which will run every test function.

If you want to skip forward, you can turn off the tests for a single problem by
commenting out the call to testProblem in the testAll definition body.
Alternatively, if you want to test a single problem, you can run testProblem() in
the interpreter to automatically see the results for just that problem.

Note that for some tests (like runInteractiveProgram) you need to check the
results yourself! Read the test output to make sure your work is correct.

46

Learning Goals

•Use logical operators on Booleans to compute whether an
expression is True or False

•Use conditionals when reading and writing algorithms that
make choices based on data

•Use nesting of control structures to create complex control
flow

•Recognize the different types of errors that can be raised when
you run Python code

47

