Booleans, Conditionals,
and Errors

15-110 — Monday 09/09

Announcements

e Hw1 was due today
e Start homeworks early!

e Check2 now released, HW2 coming out on Wednesday
e Note that Check2 has written and programming components!

e Quizlet1 is on Wednesday

e Go to recitation; it contains material that won’t be in the slides!

Quizlets

¢ There are 8 quizlets throughout the semester on Wednesdays
- Lowest two scores dropped
e Procedure:
- Bring a full-sized piece of paper (printer paper preferred)
- You’ll have 5 minutes to answer the question displayed on the screen
- No computers, phones, notes, or collaboration etc.

- When time is up, you must stop writing immediately and hand all
papers face-down to the nearest aisle

¢ You must be silent during the quizlet and while it is being collected. You
also must not talk to anyone about the quizlet until it has been graded and
released.

Learning Goals

* Use logical operators on Booleans to compute whether an
expression is True or False

» Use conditionals when reading and writing algorithms that
make choices based on data

* Use nesting of control structures to create complex control
flow

* Recognize the different types of errors that can be raised when
you run Python code

Logical Operators

Python can evaluate whether certain expressions are true or
false. These types of values are called Booleans.

Booleans are either True or False

We get a Boolean when we do a comparison with comparison
operators:

less than < greater than > equal ==
less or equal <=| |greater or equal >=| |not equal!=
S>> “Hello” —— “World”

False

We can combine boolean values using logical operators.

or or not not and and

(x > 5) or ((x*x*x2 > 50) and (x == 20))

Combining Boolean values will let us check complex requirements
while running code.

and operator takes two Boolean values and evaluates to True if
both values are True.

We use true tables to show the output for a boolean expression
given all possible inputs.

a b aandb
True True True
True False -alse
False True -alse
False False -alse

We use and when we require that both conditions be met at the
same time.

or operator takes two Boolean values and evaluates to True if

either value is True.

We use or when there are multiple valid conditions to choose

from.

a b aorb
True True True
True False True
False True True
False False False

not operator takes a Boolean value negates it, switching it to
the opposite value.

a not a
True False
False True

We use not to switch the result of a Boolean expression.

Activity: Guess the Result

If x = 10, what will each of the following expressions evaluate
to?

x < 25 or x > 15
not (x > 5 and x <= 10)

(x > 5) or ((x*x*x2 > 50) and (x == 20))

12

Conditionals

Conditionals are a control structure: they let us make
decisions based on boolean expressions.

To write a conditional (if statement), we use the following structure:

1T <BooleanExpression>:
<bodyIfTrue>

1 if x > 10 and x < 100:
indentation —» print("You win!")

(tab) print(x, "is between 10 and 100")
1f is how Python knows this is an if statement
¢ and indentation is start of if statement body

14

We will use a flowchart to demonstrate how Python executes
an if statement based on the values provided.

print("hello")

if x < 10:
print("wahoo!")

print("goodbye")

wahoo'! is only printed if x is
less than 10. But hel Lo and

goodbye are always printed.

print
"hello’

print
"wahoo!"’

print
'goodbye’

False

15

Example: Print Number of Digits

For example, we could use the following code to print whether
a number has one digit or more than one digit:

X = 24

if -10 < x and x < 10:
print("Only one digit")

1T x <= -10 or x >= 10:
print("More than one digit")

16

If we want a program to do one of two alternative actions
based on a condition we can write an e Lse statement.

In this case, instead of writing two 1 statements, we can write a
single 1 f statement and add an else.

The e lse Is executed when the Boolean expression is Fa lse.

if x > 10 and x < 100:

1
2 print(“You win!") } 1 clause

3 print(x, "is between 10 and 100")

4 else: } else clause
5 print("You lose!")

17

Updated Flow Chart Example

print("hello") print
£y < 10 'hello’
1 .
: n BL
pr-lnt(wahoo!) True @ False
else:
print("ruh roh") print print
. t("goodbye") 'wahoo!"’ "ruh roh'
pPrin
print

'goodbye’

18

Revised Example: Print Number of Digits

Using an else statement makes our earlier code much easier to
write and understand!

X = 24
if -10 < x and x < 10:
print("Only one digit")
else:
print("More than one digit")

19

Activity: Conditional Prediction

Prediction Exercise: What will the following code print?

X = 5
if x > 10:

print("Up high!")
else:

print("Down low!")

Question: Can we change the value of x to print the other string instead?

Question: Can we change the value of x to make the if/else statement
print out both statements?

20

We can use el1 f statements to add alternatives with their
own conditions to 1 f statements.

An eli1f islike an 1T, except that it is checked only if all previous
conditions evaluate to False.

1 1f x > 10 and x < 100:

2 print("You win!") .

3 print(x, "is between 10 and 100") } it clause

4 elif x > 100:

5 print("You almost win!") } elif clause
6 else:

7

print("You lose!") } else clause

21

Updated Flow Chart print

'hello’
Example
print("hello") True @ False
if x < 10:
print("wahoo!") orint
elif x <= 99: ‘wahoo!* | @ -
print("meh") v
e
print("ruh roh")
print("goodbye")
pr;nt

'goodbye’ 2

A conditional statement is a joined group of 1, elif, and
else.

All conditional statements have:

« Exactly one 1f clause
o Followed by zero or more e L1 f clauses
« Followed by zero or one el se clause(s)

It must start with an 1 f. You cannot have an el f or else without
an 1f.

These joined clauses can be considered a single control structure:
only one clause will execute!

23

Example: Grade Calculator

Let's write a few lines of code that takes a grade as a number,
then prints the letter grade that corresponds to that number
grade.

90+ is an A,

80-90 is a B,

70-80is a C,

60-70is a D,

and below 60 is an R.

Short-circuit evaluation is when Python does not evaluate
the second part of a boolean expression because it logically

does not need to.

When checking x and v, if x is
False, the expression can
never be True. Therefore,
Python doesn't even evaluate

Y.

When checking x or v, if xis
True, the expression can never
be False. Python doesn't
evaluate v.

aandb
True True True
True False False
False Foe False
False False False
aorb
True Frue True
True Faise True
False True True
False False False

Short-circuit evaluation is handy for keeping errors from
happening!

1T type(x) == type(y) and x < y:
print(“Smaller:”, x)

if x !'= 0 and 10 / x:
print(x, “is not 0”7)

26

There are two math operators that are handy for checking if
numbers have certain properties: mod % and div / /

Finds the remainder when one number is
divided by another.

modulo %

Check if a number is even with x % ==

Divides numbers by rounding down to nearest
whole number. This cuts off any digits after
the decimal point.

integer divide //

Cut off the last digit of a number with x // 10.

Nesting Control Structures

We can nest control structures inside of other control
structures.

Example: We can put 1 statements inside of 1 statements.
if age >= 26:
if license == True:
print("Rental Approved")

else:

print("Rental Denied: Invalid License”)

else:

print("Rental Denied: Must be at least 26 years old")

In program syntax, we demonstrate that a control structure is

nested by indenting the code so that it is in the outer control
structure's body.

29

Example: Car rental program

Consider code that determines if a person can rent a car
based on their age (are they at least 26) and whether they

have a driver's license.

We can use one 1 f statement to check their age,
then a second (nested inside the first) to check
he license. We'll only print 'Rental Approved'

if both 1 f conditions evaluate to True.

True

if age >= 26

False

True

3

if license == True

print

'"Rental Denied'

False

Y

if age >= 26:
if license == True:
print("Rental Approved")

print

print

"Rental Approved’ 'Rental Denied'’

else:

print("Rental Denied: Invalid License”
else:
rint ("Rental Denied:

Note that each else is paired with

the if at the same indentation level.

80

Must be at least 26 years old")

When we nest a conditional inside a function definition, we
can return values early instead of only returning on the last line.

For example, the following function will not crash when n is zero:

def findAverage(total, n):
if n <= 0:
return -1 # error code
return total / n

A function will always end as soon as it reaches a return
statement, even if more lines of code follow it.

33

Python Errors

Errors happen when syntax is not valid Python code.

>> Print(“Hello World”)

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>

NameError: name 'Print' is not defined

>> print “Hello World”
File "<stdin>", line 1
print "Hello World"

ANNANNNNANANNNNNANNNNNANANA

SyntaxError: Missing parentheses in call to
'print'. Did you mean print(...)?

There are 3 kinds of errors:

Syntax Errors: When code does not follow Python grammar rules
print(1,2

Runtime Errors: When code crashes during program execution
print(1/0)

Logical Errors: When code runs but output is not what we expect
def printHello():

print(“Goodbye”)

37

The programming language's syntax is a set of rules for how
code instructions should be written.

When Python executes your code, it first has to break your text
down into tokens, then structure those tokens into a format that the
computer can execute.

A syntax error occurs when the interpreter runs into an error while
tokenizing or structuring, the code does not follow Python
language’s syntax rules.

A syntax error means that none of your code will run, because the
syntax can't be parsed.

Most syntax errors are called SyntaxError, which make them
easy to spot.

X = (@ # @ 1is not a valid token
4 + 5 = x # the parser stops because it doesn't follow the rules

There is a special type of syntax error: IndentationError

X = 4 # IndentationError: whitespace has meaning

if x > 4: # IndentationError: missing if statement body

39

If an error occurs as the code is being executed, it's called a
runtime error.

After Python tokenizes and structures the code, the interpreter runs
through the control flow of the program line-by-line.

Runtime errors have many different names in Python. Examples:

print(Hello)
print("2" + 3)

x =5 /0

What's the difference between syntax and runtime errors?

Syntax errors: Python cannot correct parse the syntax of the text,
so none of the code will run.

Runtime errors: Python parses the code and starts to run, but gets
to a point where the code cannot be computed. Anything after the
non-working code will not run.

The third kind of error: Logical errors can occur if code runs
but produces a result that was not what the user intended.

The computer cannot catch logical errors because the computer
doesn't know what we intend to do!

To catch logical errors, you need to test your code. We will do this
with assert statements.

We use assert statements to check for logical errors by

testing whether the output of a function call is equal to what we
expect it to be.

An assert statement takes a Boolean expression. If the expression
evaluates to True, the statement does nothing. If it evaluates to
False, the program crashes with an AssertionError.

assert(findAverage (20, 4) == 5)

44

Logical errors are the hardest to find and fix. You'll learn more
about how to debug them In recitation this week.

print("2 + 2 =", 5) # no error message, but wrong!

def double(x):
return x + 2 # adding instead of multiplying

assert(double(3) == 6) # 6 is the intended result

45

def testAll():
testNumSign()
testFlowChart()

DemO: PrOgramming Starter File runInteractiveProgram()

testAll()

Starting in Check2, the programming starter files will contain test cases that use
assert statements.

To run all the tests, click the Run current script button. This will run the whole file
and call testAlLl() at the bottom, which will run every test function.

If you want to skip forward, you can turn off the tests for a single problem by
commenting out the call to testProblemin the testAlLl definition body.
Alternatively, if you want to test a single problem, you can run testProblem() in
the interpreter to automatically see the results for just that problem.

Note that for some tests (like runInteractiveProgram) you need to check the
results yourself! Read the test output to make sure your work is correct.

46

Learning Goals

* Use logical operators on Booleans to compute whether an
expression is True or False

» Use conditionals when reading and writing algorithms that
make choices based on data

* Use nesting of control structures to create complex control
flow

* Recognize the different types of errors that can be raised when
you run Python code

