Graphics

15-110 — Bonus Content

Tkinter Starter Code — Top-Level Version

In order to create graphics, we need to take a few import tkinter
preliminary steps. These will be provided to you as

tart de.
starter code root = tkinter.Tk()

First, create a new window- that's the thing that paps/v canvas = tkinter.Canvas(root,

up on the screen. height=400,
width=400)

Second, create a new canvas- that's the thing we can canvas.configure(bd=0,

draw graphics on. highlightthickness=0)

Next, pack the canvas into the window- that tells the V"~ canvas.pack()

canvas to fill the whole window.
—p # write your code here

We'll do all our drawing here.

|

root.mainloop()
Finally, the last line will tell the window to stay open p 4

until we press the X button.

Tkinter Starter Code — Function Version

) import tkinter as tk # shorten library name
Once you've learned about function g y

definitions, you can also write Tkinter def draw(canvas):
code inside of functions! pass

def makeCanvas(w, h):
root = tk.Tk()

: :
We'll move the setup code into canvas = tk.Canvas(root, width=w, height=h)

makeCanvas, then call your graphics .
function from makeCanvas. canvas.configure(bd=0,

highlightthickness=0)

canvas.pack()

We have to passin canvas as a draw(canvas)
parameter, but you can still use it the root.mainloop ()

same way as before.
makeCanvas (400, 400)

To draw a rectangle, we use the function create rectangle in our
draw function. This function takes four required parameters: the x and
y coordinates of the left-top corner, and the x and y coordinates of the

right-bottom corner. The rectangle will then be drawn between those
two points.

canvas.create rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

We can draw more shapes than just rectangles. To draw an oval,
use create oval. This function uses the same parameters as

create rectangle, where the coordinates mark the oval's
bounding box.

canvas.create oval(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

If you want to draw a square or a circle, you need to ensure that the
width of the shape equals the height.

How can you do that? Make sure that (right - left) is equal to (bottom -
top)!

canvas.create rectangle(50, 100, 150, 200)

With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument is associated with a specific name
instead of a position in the call. We can put keyword arguments in any order
we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create rectangle(50, 100, 150, 200, fill="green")

Keyword Argument - fill

The fil1 argument can be used on any
shape. It uses a string (the name of the color)
to change the color of the shape.

canvas.create rectangle(40, 40, 80, 140, fill="red")

canvas.create oval(30, 80, 150, 200, fill="green")

canvas.create rectangle(90, 70, 180, 120, fill="blue")

Note that when we draw shapes on top of
each other, the one on top is the last one
called. Order matters!

What if we want to define our own colors, by using the RGB system we
discussed in the Data Representation system? Python lets us do this, but we'll
need to represent the RGB values in a new number system.

We use the hexadecimal number system to represent a byte with just two
digits. This number system uses base 16. In comparison, normal decimal uses
base 10 and binary uses base 2.

The digits of hexadecimal are : 0123456789ABCDEF

Example: 01111011 = 7B, because 0111 is 7 and 1011 is 11 (B).

Making New Colors

To define a new color, make a string "#RRGGBB", where you replace
RR with the red value in hex, GG with green, and BB with blue.
"#FF69B4" is hot pink!

canvas.create oval(30, 80, 150, 200, fill="#FF69B4")

Interested in finding more Tkinter color names? There's a whole
databank!

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

10

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

Keyword Argument - width

Another keyword argument is width, which

specifies how many pixels wide the border of the
shape should be.

canvas.create rectangle(40, 40, 80, 140, width=5)

canvas.create oval(30, 80, 150, 200,
width=20, fill="green")

canvas.create rectangle(90, 70, 180, 120,
fill="blue", width=0)

Note that setting width to © removes the border
completely.

11

Drawing Lines

To draw a line on the screen, you
specify the two endpoints of the
line.

canvas.create line(200, 300, 400, 350)
canvas.create line(20, 100, 90, 300, fill="green")

canvas.create line(100, 100, 300, 300, width=5)

Again, we can use fi11 and
width to modify the lines.

12

To draw a polygon, you need to specify the coordinates of each of the
polygon's points as an x, y coordinate, in perimeter order.

The polygon can have as many points as needed but will need at least
three points to appear.

canvas.create_polygon(10, 10, 50, 150, 100, 50)
canvas.create_polygon(200, 200, 400, 400, 0, 400,
fill="orange")
canvas.create polygon(200, 100, 300, 0O,
400, 100, 300, 200,
outline="green", width=5)

Note here that we've also added a new keyword argument — outline,
which specifies the color of the shape's outline.

tk

Drawing text on the canvas works a bit differently from drawing
rectangles, ovals, lines, and polygons. We specify only one coordinate —
the pixel where the center of text will be drawn.

canvas.create text(200, 200, text="Hello World")

Although text is keyword argument and technically optional, text is
required in order to draw text at all.

14

Keyword Argument - font

When drawing text, we can use the keyword argument font to
change the appearance of the text.

The font parameters takes a string with one to three pieces of = '
information — the font name, the font size, and the font type. This 1s fun!

canvas.create text(200, 200, text="Hello World!",
font="Arial") Hello World!

canvas.create text(100, 100, text="This is fun!",
font="Times 30")

WESWOOWEEWO0

canvas.create text(300, 300, text="weewooweewoo",
font="Courier 10 italic")

You can find a full list of fonts and types here:

https://anzelig.github.io/rin2/book2/2405/docs/tkinter/fonts.html

15

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/fonts.html

Keyword Argument - anchor

The point used in the canvas.create text callis

actually an anchor for the text, to describe where it is GO
drawn from. That anchor defaults to the center of the

text box, but we can change it to be any compass point

instead.

canvas.create text(200, 200, text="AAA",
font="Times 30", anchor="center") BBB A A A

canvas.create text(0, 200, text="BBB",
font="Times 30", anchor="w")

canvas.create text(400, 0, text="CCC",
font="Times 30", anchor="ne")

Note that the anchor describes the point on the text box
that will correspond to the (x, y) coordinate. Since CCC's
anchor is "ne" (north-east), the upper-right corner of
the text box is placed at (400, 0).

16

If we want to use a pre-made image in Tkinter, we can load one in as a
Photolmage. This can be created with:

img = tkinter.PhotoImage(file="sample.gif")

We can resize the image if needed, using subsample to make it smaller and
zoom to make it bigger.

img = img.subsample(5) # make the image 5 times smaller
img = img.zoom(2) # make the image twice as large

Unfortunately, Photolmages can only be .pgm, .ppm, and .gif files. For more
filetypes, use the external module Pillow (we'll learn about external modules
later in the course).

Drawing images

Once you've created an image, you can draw it with create image.
This method takes the x, y coordinates of the image and can have other

optional parameters:

the image to be displayed. not really optional...
canvas.create_image(200, 100, image=imageVar)

the anchor point of the coordinate.
Same as for text, default "center"
canvas.create_image(200, 100, image=imageVar, anchor="n")

Tkinter Can Do Even More!

There's plenty of things Tkinter can draw and plenty of additional
keyword arguments that we haven't covered here.

If you're interested in learning more, check out the Tkinter
documentation:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

19

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

