Data Analysis -
Modeling and Parsing

15-110 — Monday 11/11

Announcements

e Hw5 was due today
e How did it go?

e Exam2 median: 68.1

e This is lower than we usually expect. You should review your exam feedback to see what
went wrong and use that information to study for the final exam.

e Complete Exam 2 Reflection by Friday @ 11:59pm — Worth 5 points on Check 6-1:
https://forms.qle/A7v9dX1DTcextxTv5

https://forms.gle/A7v9dX1DTcextxTv5

Hwo6 — Introduction

Hwo6 and its Checks work differently from the prior assignments. Instead of
solvm? a bunch of small problems, you'll build a guided project that uses
one of the three applications to solve an interesting problem in another field
using programming.

The Programming problems in Check6-1 will support the work in Check6-2,
and the code from both will support the work in Hw6.

Because of this, revision deadline is early for Check 6-1 and there is no
revision deadline for Check 6-2 or HW 6. Make sure to start each
assignment promptly!

(There are also short written assignments for Check6-1 and Check6-2 that
cover the lecture content — don't forget to do those too).

Hwb6 — Getting Started

To get started on Hw6, review the General Guidelines:
https://www.cs.cmu.edu/~110/hw/hw6 general.pdf

Once you've picked a project, download the instructions & starter
files from the table at the bottom of the assignments page:
https://www.cs.cmu.edu/~110/assignments.html

Then fill out this form to let us know which project you are doing
(deadline Wednesday 11/13 at 11:59 PM).
https://forms.qgle/V6S81 1L Uku8wHRJ6a9

https://www.cs.cmu.edu/~110/hw/hw6_general.pdf
https://www.cs.cmu.edu/~110/assignments.html
https://forms.gle/V6S81LUku8wHRJ6a9

We’ve finished Unit 3!

Unit 5: CS In The World

Unit 4: CS As a Tool

Unit 3: Scaling Up
Computing

Unit 2: Data Structures
and Efficiency

Unit 1: Programming
Skills & Computer
Organization

The topics we cover in this
course build on each
other!

Final includes Unit 3:

e Parallel Programming

Unit 3: Scaling Up e Distributed Computing and the
Computing nternet

e Fault Tolerance and Security
e Managing Large Code Projects

Unit 4: CS As a Tool

Unit 4 Topics:

CS As a Tool:

e QOrganizing data to help people answer
questions
e Applications of CS:
o Data analysis
o Simulation
o Machine learning

Learning Goals

e |dentify whether features in a dataset are categorical, ordinal, or
numerical

e Interpret data according to different protocols: CSV and JSON
¢ Use string operations and methods to extract data from plaintext

e Reformat data to find, add, remove, or reinterpret pre-existing
data

Data Analysis

Data Analysis is the process of using computational or
statistical methods to gain insights about data.

Data Analysis is used widely by organizations to answer questions
in many different domains. Some examples:

« Government

- Healthcare

« Marketing and Advertising
« Machine Learning

Lots of interesting graphs and data from NY Times™ articles.
https://www.nytimes.com/column/whats-going-on-in-this-graph

You can use your CMU email to get a free NY Times subscription.

13

https://www.nytimes.com/column/whats-going-on-in-this-graph

Example question: How does family income relate to which
personal challenges students write about in their college essays?

Essay subject, and average reported household income of students
$30k $40K $50k $60k $70k $80k $90k $100k $110k $120k $130k $140k $150k$160k

Economic/Material Insecurity

Abuse

Domestic Instability

Immigration

Time/Scheduling Pressure

Death

Mental Wellness

Physical Health/Ability

Academics

Discrimination/Stereotype

Emotions/Relationships

Sports

Failure

Travel (unrelated to immigration and relocation)

Note: Analysis of 3,519 essays in response to the prompt. Authors manually classified the essays. Household income is self-reported.
Source: AJ Alvero, Sonia Giebel , Ben Gebre-Medhin, Anthony Lising Antonio, Mitchell L. Stevens, Benjamin W. Domingue ® By The New York Times

Source:
https://www.nytimes.com/2021/12/09/learning/whats-going-on-in-this-graph-jan-5-2022.html

14

https://www.nytimes.com/2021/12/09/learning/whats-going-on-in-this-graph-jan-5-2022.html

The full process of data analysis involves multiple steps to
acquire data, prepare it, analyze it, and make decisions based

on the results.

We'll focus mainly
on three steps:
Hypothesis

1. Data Cleaning Generation

2. Exploration &
Visualization

3. Statistics &
Analysis

Data
Collection

Presentation
&
Action

Our focus

Data
Cleaning

Insight &
Decision
Making

Exploration
&
Visualization

Statistics
&
G EWSIE

15

What does data look like?

Data varies greatly based on the context; every problem is unique.

Example: let's collect our own datal
Fill out the following short survey:

https://tinyurl.com/110-ice-cream-{24

https://tinyurl.com/110-ice-cream-f24

Data Cleaning is the process of taking messy data and

smoothing out all irregularities.

Usually there are some irregularities
in the data. Some flavors are
capitalized; others aren't. Some
flavors might have typos. Some
people who don't like ice cream might

Flavor 1
1
2 green tea
3 Jasmine Milk Tea

have put 'n/a’, or 'none’, or 'I'm 4 Mt Ghocelate Chp
lactose intolerant'. And some flavors T andll=
might have multiple names - 'green 7 Coffeel
tea' vs. 'matcha’. .
grapenut
Data cleaning can be partially 10 i inaephe

automated (all flavors are
automatically made lowercase) but
usually requires some level of
human intervention.

Flavor 2

strawberry
Vietnamese Coffee
Rocky Road
Strawberry

Coffee

Mint chip

Peppermint stick
Mint Chocolate Chip
Vanilla

Flavor 3

cookies and cream
Thai Tea
Chocolate

Cookies and Cream
Pistachio

birthday cake BATTER (try tt

Chocolate
Coffee
Oreo

When we work with simple data, that data often falls into one
of three types which will determine what analysis we run.

Categorical: Data fall into one of several categories. Those categories are
separate and cannot be compared.

Example: style of house (ranch, split-level, two-story, duplex, Victorian, etc.)

Ordinal: Data fall into separate categories, but those categories can be
compared — they have a specific order.

Example: what is the condition of the house? (poor, fair, good, excellent, new)

Numerical: Data are numbers. We can perform mathematical operations on it
and compare it to other data.

Example: how large is the house in square feet?

Activity: Data types

You do: what type of data are our ice cream flavors — categorical,
ordinal, or numerical?

What if we added a column asking how many times the person ate

ice cream in the past week? Would that be categorical, ordinal, or
numerical?

REVIEW: Reading Data from Files

When building more complex programs, we will often want to
read data stored in a file.

Recall that all the files on your computer are organized in directories, or
folders. The file structure in your computer is a tree — directories are the inner
nodes (recursively nested) and files are the leaves.

When you're working with files, always make sure you know which sequence of
folders your file is located in. A sequence of folders from the top-level of the
computer to a specific file is called a filepath.

For example, Users > rware > Documents > sample.txt refers to the file
sample.txt in the Documents folder, which is in the rware folder, which is in
the Users folder, which is at the top level of the computer.

We can open files in Python using the built-in function
open(filepath).

This will create a File object which we can read from or write to.
f = open("/Users/rware/Documents/sample.txt")

open can either take a full filepath or a relative path (relative from the
location of the python file). It's usually easiest to put the file you want to
read/write in the same directory as the python file so you can simply refer
to the filename directly.

f = open("sample.txt")

if .py file is in Documents, will search for this file
there

22

When opening a file we need to set the mode: whether we plan
to read from or write to the file.

filename = "sample.txt"

+ = open(filename, "r") # read mode

text = f.read() # reads the whole file as a single string

or

lines = f.readlines() # reads the lines of a file as a list of strings

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once
you're done with it.

f.close()

23

Data Formats - CSV and JSON

When reading data from a file, you need to determine what is
the structure of the data.

That will inform how you store the data in Python.

We'll discuss two formats here: CSV and JSON. Then we'll discuss
how to deal with plaintext (text data not in a specific format). Many
other formats exist, though!

Comma-Separated Values (CSV) files store data in two

dimensions like spreadsheets.

The data we collected on ice
cream was downloaded as a
CSV. If we open it in a plain text
editor, you can see that values
are separated by commas.

These files don't always have to
use commas as separators, but
they do need a delimiter to
separate values (maybe spaces
or tabs).

,Flavor 1,Flavor 2,Flavor 3

1’3’

2,green tea,strawberry,cookies and cream
3,Jasmine Milk Tea,Vietnamese Coffee,Thai Tea
4 ,Mint Chocolate Chip,Rocky Road,Chocolate
5,Vanilla,Strawberry,Cookies and Cream
6,Vanilla,Coffee,Pistachio

7,Coffee! ,Mint chip,birthday cake BATTER (try t
89”

9,grapenut,Peppermint stick,Chocolate

10, Chunky Monkey,Mint Chocolate Chip,Coffee
11,Yam,Vanilla,Oreo

12,cherry,Matcha,Chocolate
13,Strawberry,Vanilla,chocolate chip

14,dulce de leche,Vanilla,Coffee
15,Vanilla,Banana, Strawberry

16,Cookie Dough,Cookies and Cream,Triple Fudge
17,Vanilla,Mocha, Strawberry

18,Butter Pecan,Cotton Candy,Mango
19,Turtle,Cookies and Cream,Vanilla

27

We can open a CSV file using the csv library.

Using the csv library to makes reading import csv
CSV files easier.

f = open("icecream.csv", "r")

This library creates a Reader object out reader = csv.reader(f)

of a File object. That object can be cast
to a 2D list, where each inner list .
corresponds to a line in the file, and the data = list(reader)
elements on the line (as separated by the ~ print(data)

delimiter) are the elements of the inner

lists. f.close()

We can pass keyword arguments into the
csv.reader call to set the delimiter.

JavaScript Object Notation (JSON) files store data that is

nested, like trees.

JSON files are commonly used
to store information that is
organized in some structured
way.

JSON files can store data types
including Booleans, numbers,
strings, lists, dictionaries, and
any combination of the above.

"vanilla" : 10,
"chocolate" : {
"chocolate" : 15,
"chocolate chip" : 7,
"mint chocolate chip" : 5
}s
"other" : ["strawberry", "matcha", "coffee"]

We can open a JSON file using the json library.

This time, we'll use import json
json.load(file). This function
reads text from a file and produces
a piece of data that matches the
type of the outermost data in the
text (usually a list or dictionary).

f = open("icecream.json",
j = json.load(f)

print(j)

_ f.close()
In our example from the last slide,

the function would produce a
dictionary mapping strings to
Integers, dictionaries, and lists.

"y

31

Activity: Match Data Structure to Format

You do: which data format would you use to store the following
types of data?

A) A hierarchical representation of employees in a company,
organized based on who reports to whom.

B) A table of tax data where each person in the table has several
columns of financial information.

Extracting Data from Plaintext

If we can read data into a simple text editor but can't fit it into a
standard format, we call it plaintext data.

To work with plaintext, you need to identify what kinds of patterns
exist in the data and use that information to structure it. The
patterns you identify may depend on which question you are trying
to answer.

In the following code the variable text contains plaintext data:

filename = "sample.txt”
f = open(filename, "r")
text = f.read()

35

When parsing data in a plaintext file, start by identifying the
pattern; then ask yourself a few questions about that pattern.

¢ Does the pattern occur across lines, or some other delimiter?
e \Where is the information in a single line/section?
¢ \What comes before or after the information you want?

Once you've identified where the information is located, use string
slicing and string methods to separate out the information you
need.

Slicing (s[start:end:step]) can be used to remove parts of the data that are
unnecessary.

The split method (s.split(".")) can be used to break up data that is
separated by a known delimiter.

The index method (s.index(":")) can be used to find the location of the
beginning or end of a section. That can be combined with slicing or splitting to
Isolate the needed data.

The strip method (s.strip()) can be used to remove whitespace (spaces,
tabs, and newlines) from the front and back of a string. This is useful for
Isolating the core text of a string.

Example: Parsing a Chat Log

chat.txt is a dataset
based on a chat log
from a previous class.
(All student names
have been modified to
preserve student
privacy).

How could we get the
names of everyone
who participated in
the chat? What's the
pattern?

14:54:28 From Malika : Could I use recursion for
AuthorMap?

14:56:03 From Ed : yep
15:00:22 From Arman : what is str.digits?

15:01:21 = From Margaret Reid-Miller to Kelly
RiveEs(Prlvately) : We only hear the music when you
spea

15:08:31 From Ed : how would you know if it were
O(n**,5)?

Example: Parsing a Chat Log

What data structure do we want to
store the data in? Lists are a common
example.

Each message occurs on an
individual line; split the text based on
newlines (“\n").

"From" occurs before each name and
" . " occurs afterwards. index to
find those locations and slice based
on them.

Use strip to clear extra whitespace.

f = open("chat.txt", "r")
text = f.read()
f.close()

people = []
for line in text.split("\n"):
start = line.index("From") +
\
len("From")
line = line[start:]
end = line.index(" : ")
line = line[:end]
line = line.strip()
people.append(line)
print(people)

39

Example: Parsing a Chat Log

A few lines don't match the " line - line[:end]

pattern; account for those if "(Privately)” in line:
too end = line.index("to")

line = line[:end]
line = line.strip()

If statements are useful
when something breaks a
pattern.

40

Modifying Data

After parsing data into an appropriate format, we may need to
change the structure to achieve the analysis we want.

This is very common in data analysis.

Assume that we are working with a 2D list produced from the ice
cream data. How can we:

e change all the flavors to be lowercase?
e remove the timestamps from the dataset?

¢ add a new column that counts the number of chocolatey
favorites?

To update a value, access the appropriate column in each row

and use indexing to change it.

For example, you might want to
convert a string to a different type via
type-casting.

import csv

Read in data from a CSV

+ = open("icecream.csv", "r")
reader = csv.reader(f)

data = list(reader)

f.close()

Data is a 2D list parsed from the file
for row in range(len(data)):
for col in range(len(data[row])):
Make all flavors lowercase

data[row][col] =
data[row][col].lower()

print(data)

43

To remove a value, use pop to remove an element of each row
based on the column that needs to be removed.

Assume data is a 2D list parsed from the file
for row in range(len(data)):

For examp|e, you m|ght want to data[row].pop(@) # remove the ID

remove user IDS when for col in range(len(data[row])):

anonymizing data. # Make all flavors lowercase
data[row][col] = data[row][col].lower()

print(data)

44

To add a value, use append or insert to add a new value into
each row, potentially based on the pre-existing values.

Assume data is a 2D list parsed from the file
for row in range(len(data)):
data[row].pop(@) # remove the ID

chocCount = 0 # count number of chocolate
separate-but-connected dataset, ,
for col in range(len(data[row])):

or by performing small analyses on 4 Make all flavors lowercase

the eXiSting data. data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:
chocCount += 1
track chocolate count
data[row].append(chocCount)
print(data)

You can add data from a

45

When using headers, make sure to treat them appropriately!

Assume data is a 2D list parsed from the file
for row in range(len(data)):
data[row].pop(@) # remove the ID

It is often easiest to skip the O
chocCount = @ # count number of chocolate

row in the loop and deal with it

_ for col in range(len(data[row])):
separately instead.

Make all flavors lowercase
data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:
chocCount += 1

track chocolate count

if row ==
data[row].append("# chocolate")

else:
data[row].append(chocCount)

print(data)

46

Learning Goals

e |dentify whether features in a dataset are categorical, ordinal, or
numerical

e Interpret data according to different protocols: CSV and JSON
¢ Use string operations and methods to extract data from plaintext

e Reformat data to find, add, remove, or reinterpret pre-existing
data

Extra Bits

The Pythonic way to open files using with.

Typically in Python, we use the with keyword to open files. The nice
thing about this is we do not need to remember to call the close
function.

f = open("icecream.csv", "r") with open("icecream.csv", "r") as f
reader = CSV.r\eader\(-F) —> # file 1is open in the with bOdy
data = list(reader) reader = csv.reader(f)

£.close() data = list(reader)

file is closed once we exit the with
body

print(data)

49

