External Modules

15-110 — Bonus Slides

Math: NumPy, SciPy
Data Analysis: Matplotlib, pandas

Machine Learning: scikit-learn
Computer Vision: OpenCV
Natural Language Processing: nltk

Websites: Django, Flask
Webscraping: Beautiful Soup

Images: Pillow

Audio: Pydub

Game Design: Pygame
3D Graphics: VPython

Data Analysis External Modules

SciPy is a group of modules that support advanced mathematical and

scientific operations. It can handle large calculations that might take the
default Python operations too long to compute.

The group includes NumPy (which focuses on core math), SciPy (math and

science functions), pandas (data analysis), and Matplotlib (plotting of charts
and graphs). These can be used separately or as a group. Each need to be

installed separately, but can be installed directly with pip install name

Website: https://www.scipy.org/

https://www.scipy.org/

NumPy's main purpose is to support mathematical operations in
Python.

That may not seem necessary at first, since Python already has support
for many math operations in the built-in libraries, but NumPy has the

advantage of being very efficient; that makes it a great library to use on
large datasets.

NumPy mostly works as you would
expect for a Python library. Its main
difference is that it organizes numbers
in lists differently from regular Python.

NumPy creates special array objects of
varying dimensions (like one- and two-
dimensional lists); these arrays can
represent vectors or matrices in
mathematical calculation.

import numpy as np

np.array([10, 20, 30, 40])
[10 20 30 40]
np.array([[1, 2, 3], [4, 5, 6],

[
#
#

12 3
(4 5 6]

7 89

[7, 8, 9] 1)

NumPy supports a lot more built-in
operations on arrays that Python
does on lists. For example, you can
directly add a number to an array;
that will add the number to each of
the numbers inside the array.

You can also directly subtract one
array from another; that will take the
difference of the numbers at
matching indexes.

import numpy as np

a = np.array([10, 20, 30, 40])

b = np.array([5, 6, 7, 8])

a + 2 # [12 22 32 42]
a-b# [5 14 23 32]

In addition to all of this, NumPy import numpy as np
also supports more advanced

indexing into multi-dimensional
arrays. c = np.array([[1, 2, 3],

[4J 5) 6]) [7) 8) 9]])

For example, if you make a 2D

array, you can index into it with c[l, 2] # 6
row comma col instead of needing

to use two indexes. This can be

quite handy!

NumPy does have its own set of mathematical functions- for example,
it can generate random numbers.

X = numpy.random.randint(1l, 10)
random number in [1, 10]

However, it's mostly used as a support library for other libraries that
want to use more efficient mathematical operations when doing
statistics, or science, or engineering tasks.

* Next, let's look at the SciPy library. SciPy provides functions for
scientific computation, mostly relying on NumPy for lower-level
calculations.

* The SciPy functions tend to be a bit higher-level so that you can run
whole processes automatically instead of scripting them yourself.

 SciPy also splits its functions into different sub-libraries. For example,
there's a sub-library called linalg for linear algebra, one called signal
for signal processing, and one called stats for statistics.

SciPy isn't too hard to use when you have a
specific purpose in mind. Just find the sub-
library that corresponds to what you want
to do, set up your data properly, and run
the function.

For example, if you want to find the inverse
of a matrix (where your matrix times its
inverse equals the identity matrix), there's a
function for that!

Just import the 1inalg sub-library, set up
your matrix as a NumPy two-dimensional
array, thenrun linalg.inv.

import numpy as np

from scipy import linalg

d

np.array([[1, 2],

linalg.inv(a))
[[-2. 1.]

H

[1.5 -0.5]]

[3, 4] 1)

11

The matplotlib library can be used to generate interesting visualizations
in Python. This is great for data analysis!

The way that specific types of charts and graphs are set up can vary a
lot, but there are some core components to every chart that are
consistent.

Draw Visualizations on the Plot

Matplotlib visualizations can be broken down into
several components. We'll mainly care about one:
the plot (called plt). This is like Tkinter's canvas,
except that we'll draw visualizations on it instead
of shapes.

We can construct an (almost) empty plot with the
following code. Note that matplotlib comes with
built-in buttons that let you zoom, move data
around, and save images.

import matplotlib.pyplot as plt

plt.title("Empty")
plt.show()

(g) Figure 1

1.0

0.8

0.6

0.4

0.2 A

0.0

€3 Q=]

Empty

0.0

0.2

0.4

0.6

0.8

1.0

13

Add Visualizations with Methods

There are lots of built-in methods that
let you construct different types of
visualizations. For example, to make a
scatterplot use
plt.scatter(xValues, yValues).

X =1[2, 4, 5, 7, 7, 9]
y = [3, 5, 4, 6, 9, 7]
plt.scatter(x, y)
plt.show()

@Figure 1

& € +a/= B

14

Visualization Methods have Keyword Args

You can customize how a visualization looks by adding Borigure -
keyword arguments. We used these in Tkinter to
optionally change a shape's color or outline; in Matplotlib
we can use them to add labels, error bars, and more.

40 A

For example, we might want to create a bar chart (with
1t .bar) with a unique color for each bar. Use the 30 1
eyword argument color to set the colors.

20 A
1abels - [IIAII) "B"’ IICII, IIDII, IIEII]
yvValues = [10, 40, 36, 46, 21] 10
colors = ["red", "yellow", "green",

llbluell, Ilpur\plell] o_.

A B
plt.bar(labels, yValues, color=colors)

plt.show() €| $Ql=

15

If you browse the Matplotlib website, you'll see that charts can be drawn with one
of two different approaches - object oriented or procedural.

The oblject-oriented approach lets you break down the window into objects, then
control each object independently. Charts are drawn by calling methods on
appropriate objects. To learn more about objects, read here:
https://docs.python.org/3/tutorial/classes.html

The procedural approach instead has you call all functions from one central library,
matplotlib.pyplot, which is usually aliased to plt. Charts are drawn by calling
functions to set up all the elements you want.

Either approach is generally fine- just pick one and stick with it.

16

https://docs.python.org/3/tutorial/classes.html

Here's a quick thing to know if you're using the object-oriented approach. Every
graph is drawn in a figure, which has some number of axes. A figure is like a
window that pops up on your screen; an axis is a part of that window dedicated to

one specific visualization.

To interact with the figure and axis directly, call p1lt.subplots to access the two
objects. This function returns two objects, so you should set up two variables to
capture the results. This can be done easily with fig, ax = plt.subplots().

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

17

Pandas is specifically built to support data analysis for data in
spreadsheets, or tables. It's great for Excel-style coding.

Pandas mostly works on a kind of data structure called a DataFrame,
which is basically a spreadsheet table.

DataFrames act a bit like 2D lists, except that it's
as easy to access data by column as it Is to
access data by row.

You can set u,o a DataFrame directly from a 2D
list fairly easily, as is shown here. You can also
load a DataFrame directly from a CSV file.

Note that, like in NumPy arrays, the DataFrame
is displayed a little differently- there are no
commas between values, and the row and
column indexes are included directly.

Some properties are familiar, though; for
example, the length of a DataFrame is just the
number of rows.

import pandas as pd

df = pd.DataFrame([[1, 2, 3],
[4, 5, 6]])

df2 = pd.read _csv("data.csv")

print(df)
H o 1 2
#Ho 1 2 3
#1 4 5 6

print(len(df)) # 2

19

Pandas DataFrame Columns

Where DataFrames get really
interesting is that you don't
need to refer to columns by
index.

You can give them names
instead, just like you often would
in a spreadsheet with a header!

We can do this by adding a
keyword argument, columns,
with a list of column names.
Column names are also loaded
automatically when a table is
loaded from a CSV.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

print(df)

Course Number

0
1
2

15-110
15-112
15-251

["15-112", "Fundamentals of Programming and CS",

12],

["15-251", "Great Ideas in Theoretical CS", 12]],

columns=["Course Number", "Course Name", "# Units"])

Course Name
Principles of Computing
Fundamentals of Programming and Computer Science

Great Ideas in Theoretical Computer Science

Units
10
12
12

20

Pandas DataFrame Indexing

Once you have a DataFrame set up,
you can index into it by column with a
normal index operation, just by
providing the column name.

For example, if we index by "Course
Number" in the DataFrame we've
created here, we'll get the values in
that column of the table. Note that
when the values are displayed, they're
paired with their row indexes, and the
column name and type are shown at
the bottom. Handy!

Indexing into a specific row is harder —
use .1iloc with the row's position as
an index.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],
["15-112", "Fundamentals of Programming and CS", 12],
["15-251", "Great Ideas in Theoretical CS", 12]],

columns=["Course Number", "Course Name", "# Units"])

print(df["Course Number"])
O 15-110
#1 15-112
2 15-251

Name: Course Number, dtype: object

print(df.iloc[@]["Course Number"]) # Principles of Computing

21

Pandas DataFrame Looping

When you loop over a DataFrame with

a for-iterable loop, you loop over the
columns, not the rows! This is sort of
like how a dictionary maps over keys.

If you want to loop over the rows
instead, use the method
df.iterrows, which produces two
values per iteration — the index of the
row and the row itself. You can index
into a column of a row the same way
you can index into a column for the
whole dataframe.

It's generally better to do work
directly with columns when possible,
though.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],
["15-112", "Fundamentals of Programming and CS", 12],
["15-251", "Great Ideas in Theoretical CS", 12]],

columns=["Course Number", "Course Name", "# Units"])

for col in df:
print(col)

Course Number

Course Name

Units

for index, row in df.iterrows():
print(index, row["Course Name"])

O Principles of Computing

1 Fundamentals of Programming and CS

2 Great Ideas in Theoretical CS 55

Pandas DataFrame Subsets

If you just want to work with a
subset of the data in a DataFrame,

there are two easy ways to do that.

If you want a particular range of
rows, slicing works on DataFrames
the same way it does on lists!

Or if you want to select a subset of
rows based on a specific property
they share in a given column, use a
Boolean operation to index into
the DataFrame instead of a normal
index. This will evaluate to a
DataFrame containing only the
rows where that operation
evaluated to True.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],
["15-112", "Fundamentals of Programming and CS", 12],

["15-251", "Great Ideas in Theoretical CS", 12]],

columns=["Course Number", "Course Name", "# Units"])

subl = df[:2]
print(subl) # only rows © and 1
Course Number Course Name
O 15-110

#1 15-112 Fundamentals of Programming and CS

Principles of Computing

sub2 = df[df["# Units"] == 12]

print(sub2) # only rows where # Units was 12
Course Number Course Name
#1 15-112 Fundamentals of Programming and CS

2 15-251 Great Ideas in Theoretical CS

Units
10
12

Units
12
12

23

Outside of DataFrames, the
pandas library works about the
way you'd expect. You can call
methods on DataFrames to
analyze the data in them or
modify the table as needed.

For example, if we want to get
the median number of units of
all the courses in the dataset,
we just need to index into the
Units column, then call the
median method on that set of
data values.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],
["15-112", "Fundamentals of Programming and CS", 12],
["15-251", "Great Ideas in Theoretical CS", 12]],

columns=["Course Number", "Course Name", "# Units"])

print(df["# Units"].median())
12.0

24

Machine Learning External
Modules

Machine learning is the process of algorithmically finding patterns in a
dataset, so that a machine can answer questions about new data or group

similar pieces of data together.

There are many, many different algorithms that have been designed to
support machine learning. Most machine learning libraries implement those
algorithms for you; all you need to do is decide which algorithm is the best fit

for your data

For general machine learning, we'll recommend scikit-learn. For specialized
algorithms, we'll discuss OpenCV and nltk.

scikit-1learn is a module that supports a large set of machine
learning algorithms in Python. If you want to dabble in machine
learning or artificial intelligence, this is a good place to start. Note that
you'll still need to provide a starting dataset to get any algorithm to

work.

Website: https://scikit-learn.org/stable/

Install:
pip install scikit-learn

27

https://scikit-learn.org/stable/

Running algorithms with scikit-learn isn't too hard; you just call methods on your
data tods%t up a model and then use the model to make predictions or check results
as needed.

The harder part of machine learning is understanding how the algorithms work,
and knowing which algorithm to use for any given task.

There's no shortcut for this; you just have to do a lot of learning to get familiar with
lots of different possible approaches.

We'll cover machine learning in a few weeks, and we'll talk more about how to
choose the proper algorithm there.

Let's just look at one example to see what the general process looks
like.

I've got a grade dataset - five quiz grades and a final exam grade for a
set of 145 students - and | want to cluster the data points, to see which
groups naturally emerge.

I'll use a clustering algorithm for this, and I'll specifically choose to use
K-means clustering.

Loading Data from a File

Let's use the built-in csv library to load a spreadsheet into a 2D list
(we'll go over how to do this next week).

import csv

f = open("grades.csv", "r")
reader = csv.reader(f)

data = list(reader)
f.close()

30

Next, we need to create a model based on the data.

We'll run the KMeans algorithm and tell it to create three clusters.
Then we'll fit that model to the dataset. The resulting model is an
object with certain properties.

from sklearn.cluster import KMeans

model = KMeans(n clusters=3).fit(data)

31

scikit-learn Model Properties

For example, you can check what the average scores of the three clusters
are by looking at the cluster centers property. The first five
numbers are quiz scores, and the last is a final exam score.

model.cluster centers
[[89.4271 94.4223 91.5873 95.2281 91.7184 87.7427]
[61.7857 81.7857 48.9285 80.6428 66.4285 63.5 :
[87.1 89.7 66.2857 90.6285 90.7142 79.]]

32

scikit-learn Model Properties

How many students are in each cluster? You can check that by looking at the labels_ property. This shows
which cluster label was assigned to each data point. By turning the labels list into aTist and running the count
method, you can check how many students are in each group.

model.labels
#[020002020200220000220000000220022212090
H 00022002001 20002000001020000020000120 2
H 0010000000001 00200000200220000000022020
000020000200002210220020000000200 0]

L = list(model.labels)

L.count(0) # 103

L.count(1l) # 7

L.count(2) # 35

33

Finally, if you want to use this model to put a new data point into one
of the clusters, use the predict method.

Predict takes a list of data points, so put the single data point in
another list. The result is the cluster that the student is assigned to.

student = [60, 70, 75, 80, 85, 87]
model.predict([student]) # [2]

34

The OpenCV library is a good choice if you want to do machine learning
with images. CV in this case stands for computer vision.

You can install it under the name opencv-python, then import it with
the name cv2. Usually this gets aliased to cv.

pip install opencv-python

import cv2 as cv

35

OpenCV Example

OpenCV lets you load images and
recognize features in them, like lines, or
corners, or digits.

For example, let's say | want to detect
edges in an image. First, | can load an
image with imread.

| can check that image with imshow too
if | want to! But | have to set up a line of
code afterwards so that the program
knows to keep the window open and
close it when you press x.

import cv2 as cv
img = cv.imread("dog.jpg")

cv.imshow("Image Window", img)

k = cv.waitKey(0)

36

To”detectLings in tEe image, Ibneed ;chJI import cv2 as cv
call a method on the image object. I' : ~ : " .
use a Laplacian algorithm and set the ~ 1Mg = cv.imread("dog.Jjpg")

depth threshold fairly low. lines = cv.Laplacian(img, cv.CV_8U)

Now we can see that the algorithm cv.imshow("Image Window", lines)
automatically detected edges around

the dog, and the mat she was laying on, < = €V.waitKey(0)
Pretty cool!

Being able to detect these kinds of
features makes it easier to run images
through machine learning algorithms.

nltk, the Natural Language Toolkit, assists with natural language
processing for machine learning purposes. This is useful whenever
you're working with a corpus of written texts.

Website: https://www.nltk.org/

Install:
pip install nltk

38

https://www.nltk.org/

One handy thing you can import nltk
do with nltk is to tokenize
text. This takes a sentence
and breaks it up into
words.

text = ""My heart is in the work!" Andrew said.'

nltk.word tokenize(text)

Note that this doesn't just # 1 > ‘My', "heart’,

split up the string by 'is’, 'in’, “the’,
spaces- it intelligently '‘work', "!', "''",
breaks up words based on ‘Andrew’, 'said', '.']

punctuation as well.

39

nltk Functions

You can also do sentiment analysis with import nltk.sentiment

nltk, where you build a model to detect

whether a piece of text is generally

positive, negative, or neutral based on analyzer = nltk.sentiment.SentimentIntensityAnalyzer()

the words in contains.

analyzer.polarity scores('"My heart is in the work!" Andrew said.')

{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}

You can train your own model, but you analyzer.polarity scores("Today is such a beautiful day!")
can also use a pre-built model by T o

imporjcing the . # {'neg': 0.0, 'neu': 0.488, 'pos': 0.512, 'compound': 0.636}
SentlmentIntenS1tyAna1yzeP; analyzer.polarity scores("I'm in a bad mood. Go away.")

which is in the sub-library sentiment.
{'neg': 0.412, 'neu': 0.588, 'pos': 0.0, 'compound': -0.5423}

Then you can just call the method
polarity scores on the text you

want to score to see what the model
thinks!

40

Web Development External
Modules

If you want to build a simple website- something that will just display
some text and images, perhaps - you should stick to the core languages
of website design, HTML for content structure and CSS for styling.

And if you just want to program in a little interactivity, the language
Javascript is easy to integrate with HTML and CSS, and is commonly
paired with those languages.

But if you want to build a more complex website that keeps track of
user state and saves data, Python can help you out!

Django is a module that lets you build interactive websites using
Python. This involves setting up a frontend (the part of a website that
the user sees while browsing) and a backend (the part of a website that

processes requests and does the actual work).

Website: https://www.djangoproject.com/

Install:
pip install django

43

https://www.djangoproject.com/

The core principles behind Django are that it is object-oriented and it
uses databases extensively.

Django uses objects to represent the data tracked by a website. For
example, a User object might have properties like username, and
password, and items in a shopping cart.

A database is a data structure that's based on a table. Databases are
designed to be able to hold a lot of data and to make it easy to look up
data based on specific properties.

Programming websites in Django is pretty complicated. It's only really
needed for complex websites, and you'll need to learn a bit about
object-oriented programming before starting.

Once you're ready, you can work through a tutorial of how to set up a
Django website here:

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

45

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

Flask is also a module that lets you build interactive websites using
Python. But Flask starts with a simple, lightweight website, instead of
requiring you to set up a database and objects first.

Website: https://flask.palletsprojects.com/

Install:
pip install flask

46

https://flask.palletsprojects.com/

Programming in Flask

You can set up a simple website in Flask pretty easily, just by using a function and some advanced
Python syntax.

import flask

app = flask.Flask("Example")
@app.route("/")

def tutorial():

return "<p>My Website</p>"

But if y]?u want to make more advanced websites, you'll still need to learn some complex Python
syntax first.

47

Beautiful Soup is a module that supports webscraping and HTML
parsing. This is useful if you want to gather data from online for use in
an application.

Website: https://www.crummy.com/software/BeautifulSoup/

Install:
pip install beautifulsoup4

48

https://www.crummy.com/software/BeautifulSoup/

Parse HTML as Tags

HTML organizes content on a page using tags, like this:

<tag attribute="value">
<subtag> Some content for the subtag </subtag>

</tag>

To parse a website, you need to look for a certain type of tag in the file.

49

Load HTML with urllib

First, how can you get the HTML of a website?

There's a handy built-in library for that, urllib. It doesn't work in all cases (like when
authentication is required), but it works for basic websites.

from bs4 import BeautifulSoup
import urllib.request

page = urllib.request.urlopen("https://docs.python.org/3/")
text = page.read()

doc = BeautifulSoup(text, 'html.parser')

50

You can access the content of a BeautifulSoup page with tag names.

For example, at the top level of the whole document, request the title of the
page by accessing the property title, with a period between the variable and
the property. Or access the whole body of the page with the property body.

doc = BeautifulSoup(text, 'html.parser’')
doc.title # <title>3.9.6 Documentation</title>

doc.body # <body><div aria-label="related navigation”

51

More BeautitulSoup Navigation

Sometimes tags will have other tags inside them. When this happens, you can
continue accessing specific tags at each level.

doc.body.p # <p>Welcome! This is the documentation for Python

For example, to get the first paragraph tag in the body, use doc.body.p.

If you want to get the text within that tag, just use the string property.

2oc.body.p.string # '\n Welcome! This is the documentation
or ...

52

BeautifulSoup Functions

To get all the tags of a certain type in the document, instead of just the first tag of that type, use the
method find all on the document. This produces a list of all the tags of that type.

a_tags = doc.find all('a')

a_tags

[index,
modules,

Python,

3.9.6 Documentation,

]

H H FH

53

BeautifulSoup Attributes

Note that some of those a tags had properties. You can access the property of a tag with a
dictionary index.

a_tags[O]["href"]
"genindex.html"

So if | wanted to get all the links on a webpage, | could use this:

for tag in a_tags:
print(tag["href"])

genindex.html

py-modindex.html

https://www.python.org/

T

54

Creative External Modules

Pillow: Python Imaging Library

Pillow is a Iightweifght and easy-to-install module that lets you manipulate
images beyond .gif files. It lets you modify images, or use different types of
images in Tkinter.

Website: https://pillow.readthedocs.io/en/stable/index.html

Install:
pip install pillow

Import:
import PIL

56

https://pillow.readthedocs.io/en/stable/index.html

Pillow Images

Pillow makes it very easy to open image
files, using the Image.open function.
You can even display those images with
image.show, or save them with
image.save.

from PIL import Image

img = Image.open("stella.jpg")
img.show()
img.save("new-stella.jpg")

57

Pillow Image Functions

You can provide Pillow images to the Tkinter create_image
function, but you can also manipulate them directly!

There are functions that let you crop and resize pictures
within the program, and much more! However, some of these

functions require that you use lists to hold the dimensions of
the picture.

newImg = img.crop([200, 200, 3500, 2500])
newImg.save("new-stella.jpg")

newImg2 = img.rotate(180)
newImg2.save("new-stella-2.jpg")

newImg3 = img.resize([1000, 1000])
newImg3.save("new-stella-3.jpg")

58

Pydub makes it possible to play and edit audio files! However, it needs
a few additional libraries to work really robustly. First, you'll need to
install the library simpleaudio to play the edited sounds.

Website: https://github.com/jiaaro/pydub

Install:
pip install simpleaudio
pip install pydub

59

https://github.com/jiaaro/pydub

Pydub lets you load a sound file into an AudioSegment object. It's then really easy to play the
sounds and edit them!

Unfortunately, by default the library only supports .wav files. It's possible to get the library to
work on more popular filetypes (like .mp3 files), but requires a lot of complicated installations.

First, let's just look at a simple example with a .wav file. Note that once the file starts playing, it
will continue until the song ends; you'll need to interrupt the program by pressing the lightning
bolt button if you want to stop it early.

from pydub import AudioSegment
from pydub import playback

music = AudioSegment.from wav('song.wav')
playback.play(music)

60

To edit music with pydub, you use slicing, like how you edit strings and lists.

The AudioSegment represents the song in millisecond segments. So to get
the first second of a song, you'd use:

song[:1000] # first second
Or to get only the first half of a song, you'd use:

song[:len(song)//2] # first half

61

You can also change the volume of a song by adding or subtracting
decibels from it.

This works like NumPy arrays — you can add or subtract a single number
from the segment, and it will propagate across all the values.

song - 20 # make quieter

Pydub AudioSegment Functions

There are a bunch of cool functions already implemented for you. For
example, you can implement fading, or speed up a song or remove silence.

Note that these functions may take a little while to run- be patient! You can
always save the result in a new file, then play that file directly.

music
music
music

music

music.fade in(10*1000)
music.speedup(2)
music.strip silence()

.export("new song.wav", format="wav"

63

If you want to edit more popular music file formats (like mp3 files), you've got two
options.

One: try to install ffmpeg, a non-python library that supports a wide range of
audio formats. Unfortunately, you can't do this with pip. Here's instructions from
Pydub on how to install: https://github.com/jiaaro/pydubttgetting-ffmpeg-set-up

Two: convert your MP3 file into a WAV file using a different audio application. One
option is VLC, which is available for free. You can convert files by going to Media >
Convert/Save, but you'll need to set up a new profile format for WAV. Here's
instructions for how to do that: https://promincproductions.com/blog/export-wav-
audio-file-from-any-video-clip-with-vic/

64

https://github.com/jiaaro/pydub
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/

Pygame is, like Tkinter, a library that lets you make graphical
applications. However, Pygame is specifically designed to create games.
It has better support for sprites and collision detection than tkinter.

Website: https://www.pygame.org/news

Install:
pip install pygame

65

https://www.pygame.org/news

The core difference between coding a game versus other kinds of coding is
that the game needs to be interactive, which means that it needs to keep
running continuously while waiting for input from the user.

Pygame supports this through a game loop. This is just a while loop that
loops until you tell it to stop.

Inside that loop, the game constantly checks for input from the user,

responds to any inputs it has received, and generally keeps the game
moving.

Let's say we want to open up a simple import pygame
window. We can do that with the
set mode method, but that by itself isn't pygame.init()

enough.
playing = True

width, height = 500, 500

We also want to be able to close that screen = pygame.display.set _mode([width, height])

window by pressing the x button. So we

need to constantly check whether the user while playing:

has asked to quit inside the game loop. for event in pygame.event.get():
if event.type == pygame.QUIT:

. . playing = False

We can do this by checking all the events

that were received by the game system. exit()

When a QUIT event happens, exit the loop,

then call the built-in function exit to exit

the window as well.

67

This isn't a game yet, though- it's just a window.

Let's make a simple clicker game. The user can click on an image on the
screen; whenever they do, their score goes up by one.

This demo will go over some of the core components of Pygame, but
there's a lot more it doesn't cover! You can do quite a bit with this
library.

The tricky thing here is that Python needs to refresh
the window every time the game loop runs, just in
case something changes. So you should actually
draw the image inside the game loop.

However, you only want the image to show up once.

Before you draw anything, fill the background of the
screen with a solid color using screen.fill, to
erase anything drawn before.

First, load the image using the
pygame.image.load method. Then set up a
rectangle that corresponds to the image in the
position where you want to show up. Use

get width and get height on the image to
make sure it is centered. Finally, use screen.blit
to actually draw the image in the game loop.

import pygame

pygame.init()

Blaying = True

lack = pygame.Color(0, 0, 0)
width, height = 500, 500
screen = pygame.display.set mode([width, height])

icon = p¥game.image.load "ball.gif"))

icon_rect = pygame.Rect(250 - icon.get width
250 - icon.get heigh
250 + icon.get_width
250 + icon.get heigh

+t~ct—~
AN N
SN N
NNONN

while playing:
for event in pygame.event.get():
if event.type ==_pygame.QUIT:
playing = False

screen.fillgblack)
screen.blit(icon, icon _rect)
pygame.display.flip()

exit()

You should also set up a score in text. The score
itself can just be a variable, and the text can be
displayed above the image.

Set up a font first; then render text based on
that font. Then the text can just be displayed
with b1it.

This time, let's specifically provide a coordinate
pair with the location where we want the text to
show up.

Score: 0

import pygame

pygame.init()

score = 0

white = pygame.Color (255, 255, 255)

font = py%ame.font.SysFont "Arial", 32%

score_text = font.render("Score: " + str(score),
False, white)

while playing:

screen.blit(icon, icon_rect
screen.blit(score_text, [250 -

. score_text.get_width() / 2, 100])
pygame.display.flip()

exit()

screen.fill%black)

Pygame Collisions

Now we need to detect whether the image has been clicked
on. The easiest way to do this is with collision detection.

Luckily, this is something that Pygame does really well! If you
can capture where the user clicked on the screen, you can
easily detect whether that pixel location collided with the
image's icon.

To capture the clicked location, check for a new event type - a
MouseButtonUp event. This will happen when the user has
clicked on the screen and releases the button. When this
happens, use the pos property of the event to get the
mouse's current position.

Then call the method collidepoint on the image's
rectangle and the point to see it they collide. If they do,
update the score.

import pygame
pygame.init()

while playing:
for event in @ygame.event.getﬁ%:
if event.type == pygame.QUIT:
_ playing = False
elif event.type == ﬁ{game.MOUSEBUTTONUP:
if icon_rect.collidepoint(event.pos):
score += 1

71

This is a good start, but itisn't
enough by itself. We've updated
the score, but we haven't updated
the score text, so the change will
never be registered on the screen.

You need to update the
score_text variable to show the
new score. For now, let's just copy
and paste the line we used before.
In the future, though, this would
be better placed in a helper
function.

And with that, the game works!

Score: 0

¢

import pygame

pygame.init()

while playing:
for event in pygame.event.get():
if event.type == pygame.QUIT:
playing = False
elif event.type == pygame.MOUSEBUTTONUP:
if icon_rect.collidepoint(event.pos):
score += 1
score_text = font.render("Score: " +

str(score), False,

white)

This approach works, and it's fine if you're not planning to develop the

game any further, but if you do plan to extend what the game can do,
you should restructure the code a bit.

Object-oriented approaches are really useful for game design. Putting

all your major game components into classes helps to organize your
code and makes it much easier to manage the core game loop.

This kind of approach also makes it easier to add new features, as it's
more clear where the code should go.

Vpython is a nice library for creating and interacting with 3D graphics.
It's mainly aimed towards scientific simulations, though; for more

game-like 3D graphics, you'll probably want to use a game engine (like
Unity, or Unreal).

Website: https://vpython.org/

pip install vpython

74

https://vpython.org/

Proirammmg in Vpython is mostly similar to programming
in Tkinter. The mam difference is that you construct 3D

objects like spheres and points instead of 2D shapes.

from vpython import *
ball = sphere(pos=vector(0, 0, 0),
radius=100, color=color.blue)
pointer = arrow(pos=vector(0, 150, 0),
axis=vector (100, 0, 0),
color=color.yellow)

When you run the script, it opens a browser window to
render the graphics.

You can then program in your own physics to move = vector(10, 0, 0)

interact with the 3D objects or make them move. .)
Usually this is done by setting up an infinite while while True:
loop. rate(100)

ball.pos = ball.pos + move

The rate function tells the while loop how long to it ball.pos.x >= 306 or \

wait between iterations. This makes it possible to ball.pos.x <= -300:
actually see the animation move. move = vector(-move.x, 0, 0)
pointer.axis = -pointer.axis

For example, by changing the vector position of
the ball, we can make it move back and forth. We
can even have it change directions by changing the
delta movement.

Changing the axis of the arrow makes it point in
the same direction as the ball is moving.

