Exam 2 Review

15-110 — Monday 11/04



Announcements

e Exam2 on Wednesday!

¢ Bring something to write with, your andrewlD card, and a large piece of
paper with your name and andrewl|D for us to collect

e Arrive early if possible — we're checking IDs + collecting andrewID
papers at the door

e Hw5 includes Code Review #2! Same rules as Code Review #1.
® Timeslot signups will be released Thursday



General Exam Taking Tips:

« Skim all the questions before answering questions
o You do not have to answer the questions in order

« Do not leave anything blank

« For code writing:
o You can always at least write the function definition!
o Make sure you understand the example

o Do | need to return something?
m Do | need to build up a result?
m What is the type of the thing | need to return?

« For code reading:
o Don’t do it all in your head
o Write down variables, function calls, and track variable updates after each
line of code
o Review the notes sheet before the exam so you know what is

there



Review Topics

« Recursion

e Lists: Code Reading
« Graphs: Code Writing
e Big-O Calculation

e Heuristics

« Hashing reminders



Recursion




Recursion: Big ldea

The core idea of recursion is that we can solve problems by
delegating most of the work instead of solving it immediately.

This works because we make the input to the problem slightly
smaller every time the function is called. That means it will
eventually hit a base case, where the answer is known right away.

Once the base case returns a value, all the recursive calls can start
returning their own values up the chain of function calls until they
reach the initial call, which returns the final resuilt.



Writing Recursive Code: reverselList

When working with recursive code, it

often helps to think abstractly about def reverselist(lst):
how to solve the problem with delegation if len(lst) == O:
before jumping into coding. return []
else:
For example: what if we wanted to smaller = reverselList(1lst[1:])

reverse a list using recursion? What is a
base case that we can solve
immediately?

return smaller + [ 1st[0] ]

In the recursive case, how do we make
the problem smaller? What can we
expect the recursive result to be if the
function works correctly? Use that
assumption to create the final result!



Activity: Recursion Code Reading

.
It's important to understand def reverselist(lst):
how recursive calls work orint("Call:", lst)
behind the scenes! if len(lst) == 0:

print("Return:", [])
return []

You do: trace by hand what the
shown function call will output.
Note the print statements!

else:
smaller = reverselist(1lst[1:])
result = smaller + [ 1st[O] ]
print("Return:", result)
return result

reverselList([3, 6, 9])



Recursion with Multiple Calls

Recursion is most powerful when we make multiple recursive
calls in the recursive case. This allows us to solve problems we

can't solve without recursion.

Example: fibonacci



The Fibonacci sequence is a sequence in which each number is the
sum of the two preceding ones.

F(n) = F(n-1) + F(n-2), n > 1

def fib(n):
if n == 0 or n == 1: Two recursive calls!
return n
else:

return fib(n-1) + fib(n-2)
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Fibonacci Recursive Call Tree

fib(4)

fib(0) =0
fib(1) =1
fib(n) = fib(n-1) + fib(n-2), n> 1

fib(2)

fib(1)

fib(0)
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Fibonacci Recursive Call Tree

fib(0) =0
fib(1) =1
fib(n) = fib(n-1) + fib(n-2), n> 1

3
— |
2 1
1 1 1 0
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Lists: Code Reading




Activity: What does this print?

def foo(W): Hints:
W.pop(2) Is Y aliased to X?
return W + [1]
s W aliased to X?
X =12, 4, 6]

Y = X.append(3) Will 1st + <anything> make a
7 = 'FOO(X) new IlSt?

print("X:",X) Does 1st.append make a new
print("Y:",Y) list?

print("zZ:",Z)



Graphs: Code Writing




Activity: getOddWeights(g)

Given a directed, weighted graph, return a list of all the odd weights in the graph.

For example, given the following graph:

g = {
"A": [ ["B", 4], ["C", 7] ],
“B": [ ["C", 1], ["D", 3] I,
¢t [ 1,
“D": [ ["B", 1] ],

}

getOddWeights(g) would return [7,1,3,1]



Big-O Calculation




Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we must
specify what it is we're counting. Some popular choices:

e comparisons: target == lst[i]
e assignments: y[i+1] = x[i]
e recursive calls: recSearch(tree["left"], target)

e all 'actions' in the program (all of the above, plus more)



Big-O Essentials: Find the Dominant Term

When calculating Big-O, we don't care about coefficients. An
algorithms that makes 3n comparisons is considered just as fast as
an algorithm that makes 2n comparisons: both are O(n).

Only the dominant term matters:

O(1) < O(log n) < O(n) < O(nN?) < O(n°) < O(2") < O(n!)



Big-O Essentials: Mind the Exponent

When dealing with Big-O equations, n is the size of the input and k
IS some constant number.

O(n¥) is polynomial in n and considered tractable, because k is
constant

O(k") is exponential in n and considered "slow" (intractable)
because n is variable and will grow over time



When is an algorithm O(n)?
Any algorithm that processes each element once is O(n).

e Add up the elements of a list
e Sum the numbers from 1 to n
e See if alist contains an odd number

e Find the index of the first even number



When is an algorithm O(n?)?

Doing an O(n) operation on every element of a list means the total
number of operations is O(n?).

Common example: nested for loops that both do n iterations:

for 1 in range(len(1lst)):
for j in range(len(lst)):
if (i !'= j) and (1lst[i] == 1st[j]):
print(1lst[i], "is duplicated")



When is an algorithm O(n?)?

An algorithm can be O(n?) even if it has just one loop!

for i in range(len(lst)):
if 1st[i] in (1st[:1] + 1lst[i+1:]):
print(1st[i], "is duplicated")

The in test on a list is itself O(n) and it is inside a for loop that does
n iterations, so the algorithm is O(n?).



When is an algorithm O(log n)?

If we cut the problem size in half each time and only consider one of
the halves, we can make log,(n) such cuts, so the algorithm is O(log n).

F;)r example, binary search cuts the list in half each time, so it is O(log
n).

Suppose we want the first digit of a long number:

while n > 9
=n // 10

N

This code makes log. ,(n) divisions, so it is also O(log n).



When is an algorithm O(2")?

If we have a recursive algorithm operating on an input of size n and
each call makes two recursive calls of size n-1, then the algorithm is

(b)(21”). The number of calls doubles every time we increase the size
y 1.

def abCombos(n, s):

if n == 0O:
print(s)

else:
abCombos(n-1, s + "a") # first recursive call
abCombos(n-1, s + "b") # second recursive call



When is an algorithm O(2")?

If we have a recursive algorithm and each call produces a result
twice as long as the previous result, then the algorithm is also O(2").

def allSubsets(1lst):
if 1st == [ ]:
return [ 1lst ]
else:
result = [ ]
subsets = allSubsets(1lst[1:])
for s in subsets:
result.append(s)
result.append([ 1lst[0] ] + s)
return result



Activity: Compute the Big-O

Consider the following function. What is its Big-O runtime in the worst case?

def example(s):
result = ""
for i in range(len(s)//2, len(s)):
result = s[i] + result

for j in range(len(s)//2):
if s[j].isupper():
result = result + s[j].lower()
else:
result = result + s[j]
return result

36



Heuristics




A heuristic is a search technique used by an algorithm to find a
good-enough approximate solution to a problem.

Heuristics may not find the best answer to an NP problem, but they
often achieve good results.

A heuristic can generate scores to rank potential next steps that
the algorithm can take at each decision point. By choosing the
highest-scored next step, the algorithm is more likely to find a
working solution quickly.

Heuristic solutions are not necessarily optimal solutions.



Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we must
specify what it is we're counting. Some popular choices:

e comparisons: target == lst[i]
e assignments: y[i+1] = x[i]
e recursive calls: recSearch(tree["left"], target)

e all 'actions' in the program (all of the above, plus more)



Hashing reminder




A good hash function must:

1. Turn immutable values into integers
2. For any input, always return the same output

3. Generally return different outputs for different inputs



