
Exam 2 Review
15-110 – Monday 11/04



Announcements

• Exam2 on Wednesday!
• Bring something to write with, your andrewID card, and a large piece of 

paper with your name and andrewID for us to collect
• Arrive early if possible – we're checking IDs + collecting andrewID 

papers at the door

• Hw5 includes Code Review #2! Same rules as Code Review #1.
• Timeslot signups will be released Thursday
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General Exam Taking Tips:

● Skim all the questions before answering questions
○ You do not have to answer the questions in order

● Do not leave anything blank
● For code writing:

○ You can always at least write the function definition!
○ Make sure you understand the example
○ Do I need to return something?

■ Do I need to build up a result? 
■ What is the type of the thing I need to return?

● For code reading:
○ Don’t do it all in your head
○ Write down variables, function calls, and track variable updates after each 

line of code
● Review the notes sheet before the exam so you know what is 

there
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Review Topics

●Recursion
●Lists: Code Reading
●Graphs: Code Writing
●Big-O Calculation
●Heuristics
●Hashing reminders
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Recursion
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Recursion: Big Idea

The core idea of recursion is that we can solve problems by 
delegating most of the work instead of solving it immediately.

This works because we make the input to the problem slightly 
smaller every time the function is called. That means it will 
eventually hit a base case, where the answer is known right away.

Once the base case returns a value, all the recursive calls can start 
returning their own values up the chain of function calls until they 
reach the initial call, which returns the final result.



Writing Recursive Code: reverseList

When working with recursive code, it 
often helps to think abstractly about 
how to solve the problem with delegation 
before jumping into coding.

For example: what if we wanted to 
reverse a list using recursion? What is a 
base case that we can solve 
immediately?

In the recursive case, how do we make 
the problem smaller? What can we 
expect the recursive result to be if the 
function works correctly? Use that 
assumption to create the final result!

def reverseList(lst):

    if len(lst) == 0:

        return []

    else:

        smaller = reverseList(lst[1:])

        return smaller + [ lst[0] ]



Activity: Recursion Code Reading

It's important to understand 
how recursive calls work 
behind the scenes!

You do: trace by hand what the 
shown function call will output. 
Note the print statements!

def reverseList(lst):

    print("Call:", lst)

    if len(lst) == 0:

        print("Return:", [])

        return []

    else:

        smaller = reverseList(lst[1:])

        result = smaller + [ lst[0] ]

        print("Return:", result)

        return result

reverseList([3, 6, 9])

8



Recursion with Multiple Calls

Recursion is most powerful when we make multiple recursive 
calls in the recursive case. This allows us to solve problems we 
can't solve without recursion.

Example: fibonacci
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The Fibonacci sequence is a sequence in which each number is the 
sum of the two preceding ones.

F(0) = 0 
F(1) = 1
F(n) = F(n-1) + F(n-2), n > 1
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def fib(n): 
    if n == 0 or n == 1:
        return n
    else:
        return fib(n-1) + fib(n-2) 

Two recursive calls!
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Fibonacci Recursive Call Tree fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)
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Fibonacci Recursive Call Tree fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

3

2 1

1 1

1 0

1 0



Lists: Code Reading
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Activity: What does this print?
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def foo(W):

    W.pop(2)

    return W + [1]

X = [2, 4, 6]

Y = X.append(3)

Z = foo(X)

print("X:",X)

print("Y:",Y)

print("Z:",Z)

Hints:
Is Y aliased to X?

Is W aliased to X?

Will lst + <anything> make a 
new list?

Does lst.append make a new 
list?



Graphs: Code Writing

17



Activity: getOddWeights(g)
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Given a directed, weighted graph, return a list of all the odd weights in the graph.

For example, given the following graph:

g = {

    "A": [ ["B", 4], ["C", 7] ],

    "B": [ ["C", 1], ["D", 3] ],

    "C": [ ],

    "D": [ ["B", 1] ],

}

getOddWeights(g) would return [7,1,3,1]



Big-O Calculation
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Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we must 
specify what it is we're counting. Some popular choices:
• comparisons:  target == lst[i]

• assignments:   y[i+1] = x[i]

• recursive calls:  recSearch(tree["left"], target)

• all 'actions' in the program (all of the above, plus more)



Big-O Essentials: Find the Dominant Term

When calculating Big-O, we don't care about coefficients. An 
algorithms that makes 3n comparisons is considered just as fast as 
an algorithm that makes 2n comparisons: both are O(n).

Only the dominant term matters:

O(1) < O(log n) < O(n) < O(n2) < O(n3) < O(2n) < O(n!)



Big-O Essentials: Mind the Exponent

When dealing with Big-O equations, n is the size of the input and k 
is some constant number.

O(nk) is polynomial in n and considered tractable, because k is 
constant

O(kn) is exponential in n and considered "slow" (intractable) 
because n is variable and will grow over time



When is an algorithm O(n)?

Any algorithm that processes each element once is O(n).

• Add up the elements of a list

• Sum the numbers from 1 to n

• See if a list contains an odd number

• Find the index of the first even number



When is an algorithm O(n2)?

Doing an O(n) operation on every element of a list means the total 
number of operations is O(n2).

Common example: nested for loops that both do n iterations:

for i in range(len(lst)):

    for j in range(len(lst)):

        if (i != j) and (lst[i] == lst[j]):

            print(lst[i], "is duplicated")



When is an algorithm O(n2)?

An algorithm can be O(n2) even if it has just one loop!

for i in range(len(lst)):

    if lst[i] in (lst[:i] + lst[i+1:]):

        print(lst[i], "is duplicated")

The in test on a list is itself O(n) and it is inside a for loop that does 
n iterations, so the algorithm is O(n2).



When is an algorithm O(log n)?

If we cut the problem size in half each time and only consider one of 
the halves, we can make log2(n) such cuts, so the algorithm is O(log n).

For example, binary search cuts the list in half each time, so it is O(log 
n).

Suppose we want the first digit of a long number:

while n > 9:
    n = n // 10

This code makes log10(n) divisions, so it is also O(log n).



When is an algorithm O(2n)?

If we have a recursive algorithm operating on an input of size n and 
each call makes two recursive calls of size n-1, then the algorithm is 
O(2n). The number of calls doubles every time we increase the size 
by 1.

def abCombos(n, s):
    if n == 0:
        print(s)
    else:
        abCombos(n-1, s + "a") # first recursive call
        abCombos(n-1, s + "b") # second recursive call



When is an algorithm O(2n)?

If we have a recursive algorithm and each call produces a result 
twice as long as the previous result, then the algorithm is also O(2n).

def allSubsets(lst):
    if lst == [ ]:
        return [ lst ]
    else:
        result = [ ]
        subsets = allSubsets(lst[1:])
        for s in subsets:
            result.append(s)
            result.append([ lst[0] ] + s)
        return result



Activity: Compute the Big-O

Consider the following function. What is its Big-O runtime in the worst case?

def example(s):
    result = ""
    for i in range(len(s)//2, len(s)):
        result = s[i] + result
    
    for j in range(len(s)//2):
        if s[j].isupper():
            result = result + s[j].lower()
        else:
            result = result + s[j]
    return result
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Heuristics

37



A heuristic is a search technique used by an algorithm to find a 
good-enough approximate solution to a problem.

Heuristics may not find the best answer to an NP problem, but they 
often achieve good results.

A heuristic can generate scores to rank potential next steps that 
the algorithm can take at each decision point. By choosing the 
highest-scored next step, the algorithm is more likely to find a 
working solution quickly.

Heuristic solutions are not necessarily optimal solutions.
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Big-O Essentials: What to Count?

When measuring the Big-O complexity of an algorithm, we must 
specify what it is we're counting. Some popular choices:
• comparisons:  target == lst[i]

• assignments:   y[i+1] = x[i]

• recursive calls:  recSearch(tree["left"], target)

• all 'actions' in the program (all of the above, plus more)



Hashing reminder
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A good hash function must:

1. Turn immutable values into integers

2. For any input, always return the same output

3. Generally return different outputs for different inputs 
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