
● Read and write code using 1D and 2D lists
● Use string/list methods to call functions directly on values

● Recognize whether two values have the same reference in memory
● Recognize the difference between mutating vs. non-mutating

functions/operations on mutable data types
● Use aliasing to write functions that destructively change lists

● Define and recognize base cases and recursive cases in recursive code
● Read and write basic recursive code
● Trace over recursive functions that use multiple recursive calls with Towers of 

Hanoi

● Recognize linear search on lists and in recursive contexts
● Use binary search when reading and writing code to search for items in sorted 

lists

● Identify the keys and values in a dictionary
● Use dictionaries when writing and reading code that uses pairs of data
● Use for loops to iterate over the parts of an iterable value

● Identify the worst case and best case inputs of functions
● Compare the function families that characterize different functions
● Calculate a specific function or algorithm's efficiency using Big-O notation

● Identify core parts of trees, including nodes, children, the root, and leaves
● Use binary trees implemented with dictionaries when reading and writing code

● Identify core parts of graphs, including nodes, edges, neighbors, weights, and 
directions.

● Use graphs implemented as dictionaries when reading and writing simple 
algorithms in code

● Identify whether a tree is a tree, a binary tree, or a binary search tree (BST)
● Search for values in trees using linear search and in BSTs using binary search
● Analyze the efficiency of binary search on balanced vs. unbalanced BSTs
● Recognize the requirements for building a good hash function and a good 

hashtable that lead to constant-time search



● Identify brute force approaches to common problems that run in O(n!) or O(2n),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
Boolean satisfiability, and exam scheduling

● Define the complexity classes P and NP and explain why these classes are
important

● Identify whether an algorithm is tractable or intractable, and whether it is in P,
NP, or neither complexity class

● Use heuristics to find good-enough solutions to NP problems in polynomial time


