15-110 Exam1 Notes Sheet

Algorithms & Abstraction

Algorithms: procedures that specify how to
do a task or solve a problem

Abstraction: changing the level of detail
used to represent/interact with a system

Designing algorithms:

Little abstraction: assume no prior
knowledge, need to define everything
Moderate abstraction: assume user has
some basic knowledge already

Heavy abstraction: can make a lot more
assumptions about incoming knowledge

Programming Basics

Integer (int): whole numbers (14)
Floating point number (float): numbers
with a fractional part (5.735)

String (str): text in quotes ("Sup all")
Boolean (bool): truth value (True)

Number operations: +, -, *, /, **, %, //
Text operations: +, *, in
Comparison ops: <, >, <=, >=, ==, |=

Expression: code that evaluates to a data
value

Statement: code that can change the state
of the program

Variable assignment: x = expr stores the
value of expr in the variable x

Variables: x evaluates to the value stored
in the variable x

When dealing with an error:

1. Look for the line number

2. Look at the error type

3. For SyntaxErrors, look for the inline
arrow

4. For other errors, read the error
message

Data Representation

Number system: a way of representing a
number using symbols. Currency, decimal,
etc

Binary numbers: numbers in the base 2
system, composed of Os and 1s.

Bit: a single digit in binary

Byte: eight bits interpreted together

Translate binary to decimal: add together
the powers of 2 represented by the 1s. The
first eight powers of 2 are 1, 2, 4, 8, 16, 32,
64, and 128.

Translate decimal to binary: repeatedly
look for the largest power of 2 that fits in
the decimal and remove it

Interpret binary as color: represent a single
color with RGB (Red-Green-Blue). Each
color component is represented by three
bytes- intensity of red, then green, then
blue.

Interpret binary as text: make a lookup
table (like ASCII) that maps characters to
numbers. Convert each byte to a number
and look it up in the table.

Function Calls

Function: an algorithm implemented
abstractly in Python that can be called on
specific inputs

Arguments: input values to function call
Returned value: evaluated result, the
output. If no output, defaults to None



15-110 Exam1 Notes Sheet

Side effect: visible things that happen as
the function runs (printing, graphics, etc)

print(expr) - show expr in interpreter
abs(num) - absolute value of num
pow(x, y) -raises x to power of y
round(x, y) -round x to y sig. digits
type(expr) - type of evaluated expr
input(msg) - accepts user input
ord(c) - ASCII value of c

chr(x) - character of ASCII value x

Library: a collection of functions that need
to be imported to be used

import libraryName

math.ceil(x) - ceiling of x

math.log(x, y) - log of x with base y
math.radians(x) - degrees to radians
math.pi - pi (to some number of digits)

random.randint(x, y) - random intin
range [x, y]

random.random() - random float in range
[0, 1)

canvas.create_rectangle(a,b,c,d) -

draw a rectangle from point (a, b) to point

(c, d)

canvas.create_rectangle(a,b,c,d,
fill="blue")

- fill in the rectangle with the color blue

Function Definitions

Function definition: abstract
implementation of an algorithm. Provides
input with parameters (abstract variables),
produces a result with a return statement.

def funName(args):
# body
return result

Local scope: variables in function
definitions (including parameters) are only
accessible within that function.

Global scope: variables at the global (top)
level are accessible at the top-level, and by
any function.

Function Call Tracing: Python keeps track
of the functions it is currently calling in
nested function calls. When Python
reaches a return statement, it returns the
value to the most recent function that
called the current function.

Booleans, Conditionals, & Errors
Logical operators: and, or, not

Short circuit evaluation: Python only
evaluates the second half of a logical
operation if it needs to

Conditional statement: control structure
that allows you to make choices in a
program.

if booleanExpr:
1fBody

elif booleanExpr:
elifBody

else:
elseBody

Syntax Error: an error that occurs when
Python cannot tokenize or structure code.



15-110 Exam1 Notes Sheet

Examples: SyntaxError,
IndentationError, Incomplete Error

Runtime Error: an error that occurs when
Python encounters a problem while
running code. Examples: NameError,
TypeError, ZeroDivisionError

Logical Error: an error that occurs when
code runs properly but does not produce
the intended result. Often (but not always)
caused by a failed test case with
AssertionError

assert(funName(input) == output)

Circuits and Gates

Circuit: a hardware component that
manipulates bits to compute an algorithmic
result. Can also be simulated with an
abstract version.

Gate: an abstract component of a circuit.
Takes some number of bits as input and

outputs a bit.

Gates: A (and), V (or), = (not), @ (xor);
also nand and nor (no special symbols)

Gates (in circuits):

e L,
—[>w
=D o

-
Ao
=D

Truth table: a table that lists all possible
input bit combinations and the resulting
output for a particular gate or circuit

Half-adder: a circuit that takes two
one-digit binary numbers, adds them, and
outputs two digits as the result

Full adder: a circuit that takes two one-digit
binary numbers and a carried-in digit, adds
all three, and outputs two digits as the
result

N-bit adder: a circuit that takes two n-bit
numbers, adds them together by chaining
together n full adders, and outputs a
n+1-digit result

While Loops

While loop: a control structure that lets you
repeat actions while a given Boolean
expression is True

while booleanExpr:
whileBody

Infinite loop: a while loop that never exits
due to the state of the program

Loop control variable: a variable used to
manipulate the number of times a loop
iterates. Requires a start value, update
action, and continuing condition.

For Loops



15-110 Exam1 Notes Sheet

For loop: a control structure that lets you
repeat actions a specific number of times

for var in range(rangeArgs):
forBody

Range: a function that generates values for
the loop control variable in a for loop. Can
take 1-3 inputs.

range(end) # [0, end)
range(start, end) # [start, end)
range(start, end, step)

# step provides the increment

Strings

Index: access a specific value in a
sequence based on its position. Positions
start at @ and end at 1len(seq)-1.
Non-existent indexes result in IndexError.

strExpr[index]

Slice: access a subsequence of a larger
sequence based on a given start, end (not
inclusive), and step
strExpr[start:end:step] # slice
strExpr[start:end] # also slice

# default to @:len(strExpr):1

Looping over strings: use range and
indexing to access one character at a time.

for i in range(len(strExpr)):
something with strExpr[i]

Common string methods:

strExpr.islower() - returns True if all
characters in strExpr are lowercase
strExpr.isupper() - returns True if all
characters in strExpr are uppercase
strExpr.count(x) - return the number of
times the subpart x occurs in strExpr
strExpr.index(x) - return the index of
the subpart x in strExpr, or raise an error
if it does not occur in the value

strExpr.lower() - returns a new string
with all character in strExpr lowercase

strExpr.upper() - returns a new string
with all characters in strExpr uppercase

General Control Structures

Control flow chart: chart that designates
how a program steps through commands.
Uses branches for conditional checks and
arrows leading back to previous
commands for loops.

Nesting: a control structure can be
included in the body of another control
structure through use of indentation.

Nested loop: a loop with another loop in its
body. The inner loop is fully executed for
each iteration of the outer loop.



