
Parallel Programming
15-110 – Monday 10/31



Announcements

• Hw4 was due today
• How did it go?

• Check5/Hw5 available
• Note that Check5 only has a written component – no programming part

2



Learning Goals

• Recognize and define the following keywords: concurrency, parallel 
programming, CPU, scheduler, throughput, multitasking, 
multiprocessing, and deadlock

• Calculate the total steps and time steps taken by a parallel algorithm

• Create pipelines to increase the efficiency of repeated operations by 
splitting steps across cores

3



New Unit: Scaling Up Computing

4



New Unit: Scaling Up Computing

In the unit on Data Structures and Efficiency, we determined that 
certain algorithms may take a long time to run on large pieces of data.

In this short unit, we'll address the following questions:

• How is it possible for complex algorithms on huge sets of data (like 
Google search) to run quickly?

• How can we write algorithms that work across multiple computers, 
instead of running on just one machine?

5



Two Ways to Increase Efficiency

When we compute Big-O runtimes of programs, we count the number 
of abstract actions taken. On real computers those actions must be 
executed using real circuits, and we can influence the speed of those 
circuits through the design of the computer's hardware. (The same 
number of actions are taken – they can just happen a lot faster).

There are two ways we can easily speed up a computer:

• Increase the number of transistors on the computer

• Have the computer run actions in parallel instead of sequentially

6



Transistors Provide Electronic Switching

A transistor is a small device that makes it possible to switch electric signals. 
In other words, adding a transistor to a circuit gives the computer a choice
between two different actions.

The more transistors you add to a computer, the faster the computer gets. But 
you're limited by the size of the transistors and the size of the computer; 
there's only enough space to add so many transistors inside a computer.

Over time, engineers worked to fit more and more transistors on computers. 
This meant that computers could get faster and faster every year as new 
advances were made!

7



Switch From Smaller Transistors to Concurrency

For a while, engineers were able to double the speed of computers every 
two years by increasing the number of transistors in a computer. However, 
around 2010 it became physically impossible to keep up this doubling rate 
because of physical limitations related to power and heat. Computers 
couldn't get faster unless we made them bigger.

This led to a different tactic: instead of speeding up computers by adding 
more transistors, we decided to speed up computers by having them run 
multiple programs at the same time. This is called concurrency.

To accomplish this, we had to change some of the hardware that makes 
computers run...

8



CPUs and Multitasking

9



CPUs Manage Computation

A CPU (Central Processing Unit), also called a 
core, is the part of a computer's hardware that 
actually runs the actions taken by a program. 
It's composed of a large number of circuits.

The CPU is made up of several parts, including:

• Control unit: maps the individual steps taken 
by a program to specific circuits.

• Logic units: individual circuits that can 
perform simple operations (like addition and 
multiplication).

• Registers: areas that can store information 
and act as temporary memory.

10



CPUs Interact with Memory

Computers also have memory
that the CPU can read from and 
write to. This is how the CPU 
can load instructions and save 
results.

Combine a CPU with memory 
and basic mechanisms for input 
and output, and you've got a 
simple abstract computer!

11

CPU

Memory

Input Output

This organization of CPU, memory, input, and 
output is called a von Neumann architecture.



Schedulers Arrange Programs

When you use a computer, you don't 
just run one program at a time - you 
likely have multiple applications 
open and running at any given 
moment. How does the CPU decide 
what action to take next?

The scheduler is a computer 
component that takes information 
from the programs that are currently 
running and input from the user and 
decides which program gets to use 
the CPU. 

12

CPU

Scheduler



Multitasking with a Scheduler

A scheduler could choose to let a program complete all of its actions before switching to 
the next program. But it usually doesn't! The scheduler can make programs appear to run 
at the same time by breaking each application's process into steps, then alternating 
between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user, even 
though only one process is running at any given point in time. This is called multitasking.

time

Process 1:

Process 2:

run

step1

run

step1

run

step 2

run

step 2

run

step3

13



Schedulers Maximize Throughput

When two (or more) processes are 
running at the same time, the steps don't 
need to alternate perfectly.

The scheduler may choose to run several 
steps of one process, then switch to one 
step of another, then run all the steps of 
a third. It might even choose to put a 
process on hold for a long time, if it isn't 
a priority or is just stalling while waiting 
for a user action.

In general, the scheduler chooses which 
order to run the steps in to maximize 
throughput for the user. Throughput is 
the amount of work a computer can do 
during a set length of time.

run

step1

run run

step1 step 2

run run

step1 step 2

time

Process 1:

Process 2:

Process 3:

14



Your Computer Multitasks

Your computer uses multitasking to manage 
all of the applications you run, as well as 
the background processes needed to make 
your computer work.

You can see all the applications your 
computer's scheduler is managing by going 
to your process manager (Task Manager on 
Windows, Activity Monitor on Macs). You 
can even see how much time each process 
gets on the CPU!

You do: open your process manager now to 
see how much CPU time each application 
takes

15



Multitasking is Fake Concurrency

Multitasking is very useful, but it doesn't increase the speed of a 
complex algorithm. A single CPU can still only run one action at a time, 
so an algorithm is still limited to the rate designated by the design of 
the CPU itself.

How can we speed up algorithms? We can use multiple CPUs!

16



Multiprocessing and 
Parallel Programming

17



Multiprocessing Runs Multiple CPUs

Multiprocessing is a method of concurrency where you run multiple 
actions at the exact same time on a single computer.

To make this possible, you put multiple CPUs inside a single computer. 
Then the computer can send different actions to different CPUs at the 
same time.

If you have two CPUs instead of one, you can theoretically double the 
speed of your computer. With four CPUs, you could quadruple it!

18



Sidebar: Multiple Processor vs. Multi-Core

Technically there are two ways to put several CPUs 
into a single machine.

The first is to insert more than one processor chip 
into the computer. This is called multiple 
processors.

The second is to put multiple 'cores' on a single 
chip. Each core can manage its own set of actions. 
This is called multi-core.

There are slight differences between these two 
approaches in terms of how quickly the CPUs can 
work together and how they access memory. For 
this class, we'll treat them as the same.

Multiple 
Processors

Multi-Core

19



Scheduling with Multiprocessing

When we use multiple cores and multiprocessing, we can run our 
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

time

Process 3:
[on Core 1]

Process 9:
[on Core 2]

run

step3

run

run

step1

step1

run

run

step 2

step 2

20



Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing, 
where we condense all of the steps of an application into one block.

Microsoft Word

Firefox

Thonny

Zoom

Core 1

Core 2

Core 3

Core 4

21



Multiprocessing and Multitasking

The number of cores we have on a single computer is usually still 
limited. Most modern computers use somewhere between 2-8 cores. If 
you run more than 2-8 applications at the same time, the cores use 
multitasking to make them appear to run concurrently.

You can check how many cores your own computer has! If you're on 
Windows, go back to the process manager and switch to the tab 
'Performance'. If you're on a Mac, go to About This Mac > System 
Report > Hardware.

22



Scheduling with Multiprocessing and Multitasking

Here's a simplified view of what scheduling might look like when we 
combine multiprocessing with multitasking.

Microsoft Word

Firefox

Thonny

Zoom

Core 1

Core 2

Core 3

Core 4

Microsoft Word Microsoft WordPPT PPT PPT

Firefox Firefox Firefox Firefox

23



Parallel Programming Divides a Program

We can use multiprocessing to run multiple applications at the same 
time, but we can also use it to run a single process on multiple cores at 
the same time. This is called parallel programming, because the 
program is being run on multiple CPUs in parallel.

With parallel programming, our efficiency problem should be solved! 
Now we can take an inefficient algorithm and just split it across a bunch 
of cores; that way, the work can get done a lot faster!

Unfortunately, it's not that simple...

24



Difficulty of Design

Parallel programming tends to be more difficult than regular programming. It 
forces you to think in new ways and adds many new constraints to the 
problems you try to solve.

Because this is so difficult, we won't write actual parallel programs in this 
class. But we will talk about common algorithmic approaches for writing 
parallel code.

To solve a problem using parallel programming, we must design algorithms 
that can be split across multiple processes. This varies greatly in difficulty 
based on the problem we're solving!

25



Summing a Tree Concurrently

Let's start with a simple example. We showed in 
class how to write a function that can sum all 
the nodes in a tree. This would run in O(n) time 
sequentially, since each node needs to be 
visited. What if we do it concurrently?

We do zero-to-two recursive calls in each 
recursive case (one on the left child, one on the 
right). Call the left child recursively on the 
current core and send the right child's call to a 
new core. This lets us do the two recursive calls 
concurrently. In our example to the right, this is 
shown using different colors for each core.

26

6

3 2

7 98 8



Total Steps vs Time Steps

When we want to determine the efficiency of a parallel algorithm, it helps to 
compare the total number of steps to the number of time steps.

The total number of steps is just the number of actions taking place across 
all CPUs in the whole process. For summing the previous tree that's always 7 
steps, whether or not we use parallelization.

The number of time steps is the number of steps taken over time. Multiple 
actions can be merged into a single time step when they happen at the same 
time. Summing the tree sequentially takes seven time steps, but summing 
the tree concurrently only takes three time steps.

27



Summing a Tree Concurrently

How can we calculate the efficiency of 
concurrent tree summing? Consider the 
original core, which does the most steps. 
This will only do one call per level of the tree.

If the tree is balanced, it will have log n 
levels. Concurrent tree-summing is O(log n)!

28

6

3 2

7 98 8



Making Loops Concurrent

It's easy to make recursive problems like tree-summing concurrent if they make multiple 
recursive calls. It's harder to think concurrently when writing programs that use loops.

We could plan to identify all the iterations of the loop and run each iteration on a separate 
core. But what if the results of all the iterations need to be combined? And what if each 
iteration depends on the result of the previous one? This gets even harder if we don't know 
how many iterations there will be overall, like when we use a while loop.

A bit later, we'll talk about how to use algorithmic plans to address these difficulties.

29

def search(lst, target):
for item in lst:

if item == target:
return True

return False

def getSum(lst):
sum = 0
for item in lst:

sum = sum + item
return sum

def powersOf2(n):
i = 2
while i < n:

print(i)
i = i * 2



Sharing Resources

The next difficulty of writing 
parallel programs comes from 
the fact that multiple cores need 
to share individual resources on 
a single machine.

For example, two different 
programs might want to access 
the same part of the computer's 
memory at the same time. They 
might both want to update the 
computer's screen or play audio 
over the computer's speaker.

30

CPU

Memory

Input Output

CPU



Locking and Yielding Resources

We can't just let two programs update a resource simultaneously- this will result in garbled 
results that the user can't understand. For example, if one program wants to print "Hello 
World" to the console and the other wants to print "Good Morning", the user might end up 
seeing "Hello Good World Morning".

To avoid this situation, programs put a lock on a shared resource when they access it. 
While a resource is locked, no other program can access it.

Then, when a program is done with a resource, it yields that resource back to the 
computer system, where it can be sent to the next program that wants it.

Sidebar: if we want two programs to use a resource simultaneously, we usually use a third 
program to combine the actions together, and that third program is the one that accesses 
the resource. For example, if you listen to music while watching a lecture recording, your 
computer mixes the two audio tracks together and plays the combined result.

31



Deadlock Stalls the System

In general, this system of locking and 
yielding fixes most cases where programs 
might try to use a resource at the same 
time. But there are some situations where 
it can cause trouble.

Two programs, Youtube and Zoom, both 
want to access the screen and audio. They 
put their requests in at the same time, and 
the computer gives the screen to Youtube
and the audio to Zoom.

Both programs will lock the resource they 
have, then wait for the next resource to 
become available. Since they're waiting on 
each other, they'll wait forever! This is 
known as deadlock.

32



Deadlock Definition

In general, we say that deadlock occurs when 
two or more processes are all waiting for some 
resource that other processes in the group 
already hold. This will cause all processes to 
wait forever without proceeding.

Deadlock can happen in real life! For example, 
if enough cars edge into traffic at four-way 
intersections, the intersections can get locked 
such that no one can move forward.

In the example to the right, each direction of 
traffic needs two of the intersection spots, but 
only has one. All four directions are blocked as 
a result.

33

A

B C

D



Fix Deadlock With Ordered Resources

In order to fix deadlock, impose an 
order that programs always follow 
when requesting resources.

For example, maybe Youtube and 
Zoom must receive the screen lock 
before they can request the audio. 
When Youtube gets the screen, it can 
make a request for the audio while 
Zoom waits for its turn.

When Youtube is done, it will yield 
its resources and Zoom will be able 
to access them.

34



Activity: Dining Philosophers

Another example of deadlock occurs 
in the Dining Philosophers problem.

Several philosophers sit down at a 
circular table to eat. Each thinks for a 
while, then picks up their left fork, 
then picks up their right fork, then 
eats a bit. Then they put down the 
forks to think some more, then eat 
some more, etc.

You do: How can these philosophers 
get into deadlock? How can we solve 
that deadlock?

35



Some Processes Need to Communicate

We can't always guarantee that the processes running concurrently on a computer 
are independent. If a single program is split into multiple tasks that run concurrently 
instead, those tasks might need to share partial results as they run. They'll need a 
way to communicate with each other.

Data is shared between processes by passing messages. When one task has found a 
result, it may send it to the other process before continuing its own work.

If one process depends on the result of another, it may need to halt its work while it 
waits on the message to be delivered. This can slow down the concurrency, as it takes 
time for data to be sent between cores or computers. Example: in tree-summing, a 
core will need to wait for both calls to finish before it can sum the results.

36



Generic Parallel Approaches

Writing algorithms that can pass messages is tricky. To make it easier, 
we use general algorithmic approaches that can be adapted for 
specific tasks.

We'll discuss one common approach today (pipelining) and another in 
the next lecture (MapReduce).

37



Pipelining

38



Pipelining Definition

One algorithmic process that simplifies 
parallel algorithm design is pipelining. In 
this process, you start with a task that 
repeats the same procedure over many 
different pieces of data.

The steps of the procedure are split across 
different cores. Each core is like a single 
worker on an assembly line; when it is 
given a piece of data it executes the step, 
then passes the result to the next core.

Just like in an assembly line, the cores can 
run multiple pieces of data simultaneously 
by starting new computations while the 
others are still in progress.

39



Demo: Real-Life Pipelining

Let's compare pipelining to sequential work with a real-life race!

We need to generate ten greeting cards. We can divide the process of writing 
a greeting card into three steps:

1. Write 'Wish you were here!' inside the card
2. Put the card inside an envelope
3. Seal the envelope

What happens if we have one process (person) complete all three tasks vs. 
having three processes (people) complete the tasks using a pipeline?

40



Sequential Pizza – 1 worker, 1 oven, 12 steps

Here's an example of pipelining through the lens of line cooking. To make a pizza, 
we must:

1. Flatten the dough

2. Apply the toppings

3. Bake in the oven

If we need to make four pizzas without parallelization, it will look like this:

This takes 12 total steps. What if we used pipelining?
41



Pipelining Pizza - 3 workers, 1 oven, 6 steps

Worker 1:

Worker 2:

Worker 3:

42

Each worker has one task. #1 flattens dough, #2 arranges toppings, #3 bakes in the oven. 
There are still 12 total steps, but only 6 time steps occur.



Rules for Pipelining

When designing a pipeline, it's important to remember that each step 
relies on the step that came before it. You cannot start applying 
toppings until the dough has been flattened.

Additionally, the length of time that the pipelining process takes 
depends on the longest step. If flattening dough and applying toppings 
are fast (maybe 5 minutes each) but cooking in the oven is slow (maybe 
20 minutes), the whole process will have to wait on the slowest step to 
conclude.

43



Benefits of Pipelining

Pipelining is most useful when the number of shared resources is 
limited. For example, you probably use pipelining when doing laundry 
at home, because you have a limited number of washers and driers to 
work with!

In computer science, pipelining is used to increase the efficiency of 
certain operations, like matrix multiplication. It's also used in the Fetch-
Decode-Execute cycle, which is how the CPU processes instructions.

44



Learning Goals

• Recognize and define the following keywords: concurrency, parallel 
programming, CPU, scheduler, throughput, multitasking, 
multiprocessing, and deadlock

• Calculate the total steps and time steps taken by a parallel algorithm

• Create pipelines to increase the efficiency of repeated operations by 
splitting steps across cores

45


