
Runtime and Big-O Notation
15-110 – Monday 10/10

Announcements

• How to interpret Exam1 (and other) rubrics
• Only the highlighted items were applied to your submission
• Check the items that aren't highlighted to see what you're missing!

• Hw3 was due today
• How did it go?

• No Check4 due to fall break. Hw4 is extra-large instead – start early!

• Non-class Reminder: a big US election is happening next month, on November
8th. The last day to register to vote in Pennsylvania is October 24th. If you're a US
citizen and you want to vote in PA, update your registration ASAP!
• Link: https://www.pavoterservices.pa.gov/pages/VoterRegistrationApplication.aspx

2

https://www.pavoterservices.pa.gov/pages/VoterRegistrationApplication.aspx

Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function or algorithm's efficiency using Big-O
notation

3

Efficiency = Time = Money

We talk about efficiency a lot in this unit. Why do we care?

Computers are fast, but they can still take time to do complex actions.
Faster algorithms can save lives, increase company profits, and reduce
user frustration.

A major goal of computer scientists is not just to make algorithms that
work, but algorithms that work efficiently.

4

Comparing Search Algorithms

5

Comparing Linear vs. Binary Search

Recall our comparisons of linear search vs. binary search in the
previous lectures. How can we compare these algorithms at an abstract
level?

We could run them on the same input and time them. However, how
quickly a program runs varies based on lots of factors (the
implementation, the machine, which other programs are running, etc.)

Instead, we'll choose some meaningful action that occurs in the
program and count the number of actions the program takes on a given
input.

6

Counting the number of actions

What actions might we count? Some lines of code may compose multiple
operations into one line, and some actions may take longer than others to
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we choose some
specific action and count how many times the algorithm runs that action
based on the size of the input.

For example, in linear or binary search we can count the total number of
comparisons that the algorithms make to find an item based on the number
of items in the list.

7

1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, target):

if len(lst) == 0:

return False

elif lst[0] == target:

return True

else:

return linSearch(lst[1:], target)

How many list elements are compared to
66?

linear search: 9 elements
binary search: 4 elements

def biSearch(lst, target):

if lst == []:

return False

else:

mid = len(lst) // 2

if lst[mid] == target:

return True

elif target < lst[mid]:

return biSearch(lst[:mid], target)

else: # lst[mid] < target

return biSearch(lst[mid+1:], target)

8

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Best Case, Worst Case

9

Best Case and Worst Case

To truly compare the algorithms, it isn't enough to test them on a
random example. We want to know how they'll do in the best case and
in the worst case. Those cases are defined based on the input to the
function.

Best case: an input of size n that results in the algorithm taking the
least steps possible.

Worst case: an input of size n that results in the algorithm taking the
most steps possible.

10

Best Case and Worst Case – Linear Search

What's the best case for linear search?

Answer: a list where the item we search for is in the first position

What's the worst case for linear search?

Answer: a list where the item we search for is not in the list.

11

Best Case and Worst Case – Binary Search

You do: what's the best case input and worst case input for binary
search if we're counting comparisons?

12

Best Case/Worst Case Actions

How many actions do we perform in the best case?

For both linear search and binary search, there's just one
comparison – when you find the item with the first comparison, you
can exit the function immediately.

How many actions in the worst case?

In linear search, we have to check every single element. If the list
has n elements, we do n comparisons before knowing the element
is not in the list.

What about binary search?

13

Worst Case Action Count – Binary Search

Each call to binary search compares one item of the list. How many recursive calls
(and therefore comparisons) do we make to binary search for different length lists?

14

List size Number of recursive calls

1 1

22-1 = 3 2

23-1 = 7 3

24-1 = 15 4

25-1 = 31 5

2k -1 k

n log2(n)

When the input length
doubles for linear search, it
does twice as many
comparisons.

But, when the input length
doubles for binary search,
it does just one more
comparison!

Sidebar: Calculating Efficiency

Our implementation of binary search only looks better than our
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to
create a copy of the list. Our recursive implementations of linear and
binary search both slice the list on every call.

This is inefficient – we're doing more work than we need to! A better
approach would be to pass the reference of the original list and change
the indexes checked instead of changing the list itself.

15

Function Families

16

Function Families

When we count the actions taken by algorithms, we don't really care about
one-off operations; we care about actions that are related to the size of the
input. For example, if we set y = 2x + 10, x is the input size.

In math, a function family is a set of equations that all grow at the same rate
as their inputs grow. For example, an equation might grow linearly or
quadratically.

When determining which function family represents the actions taken by an
algorithm, we say that n is the size of the input. For a list, that's the number
of elements; for a string, the number of characters.

17

Common Function Families

18

n (amount of data)

Number of

Operations

Exponential (2n)

Constant

Logarithmic (log n)

Quadratic (n2)

Linear (n)

Function Families and Constants

19

Notice that as n grows,
the function family
becomes much more
important than the
constants, and
functions with the
same function family
behave similarly.logarithmic

Alternate Visualization

Here's another way to think about the function families. Consider what happens when you
double the size of the input.

20

Constant double input, no
change in actions

Input Size Actions Taken

Logarithmic double input,
+1 action

Linear double input,
double actions

Quadratic double input,
quadruple actions

Exponential double input, many
many more actions!

Big-O Notation

21

Big-O Notation

When we determine a program or algorithm's runtime, we ignore
constant factors and smaller terms. All that matters is the function family,
the dominant term (highest power of n). That is the idea of Big-O
notation.

22

f(n) Big-O

n O(n)

32n + 23 O(n)

5n2 + 6n - 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the
Big-O of an algorithm refers to its
runtime in the worst case
(computer scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS
classes, you'll learn more about how Big-O actually works.

Big-O of Linear Search / Binary Search

Because runtime for linear search is proportional to the length of the
list in the worst case, it is O(n). Every time we double the length of the
list, binary search does just one more comparison in the worst case; it
is O(log n).

23

Binary search is
incredibly fast. Linear
search is exponentially
slower in the worst case!

binary

Big-O Calculation Strategy

We'll often need to calculate the Big-O of an algorithm or a piece of code to
determine how efficient it is and whether we can make it better.

We can determine an algorithm's Big-O by determining how many actions
take place based on the size of the input. We can often do a rough estimate
of actions by just counting the number of statements that will run. It may
also help to look at how the number of actions changes as we double the
size of the input.

Let's go through a bunch of examples to demonstrate.

24

O(1) is Constant Time

def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp

25

Does the runtime of this
algorithm depend on the
number of items in the list?

Answer: No.

This algorithm is constant time
or O(1); its time does not
change with the size of the
input.

O(log n) is Logarithmic Time

def countDigits(n):

count = 0

while n > 0:

n = n // 10

count = count + 1

return count

26

Every time you increase n by a factor of 10,
you run the loop one more time. All the
operations in the loop are constant time.
Similar to binary search, the algorithm is
logarithmic time, or O(log n).

Why? O(log 2n) = O(log n) + 1 - you add one
action per doubling of the input.

Even though this is log10(n), we don't include
the base in the Big-O notation because a
change of base is just a multiplicative factor.

O(n) is Linear Time

def countdown(n):

for i in range(n, -1, -5):

print(i)

27

This code will loop n/5 times overall. If
we double the size of n, how many
more times do we go through the
loop?

Answer: We double the number of
times through the loop. That is linear
time, or O(n), as it is proportional to
the size of n. Stepping by 5 doesn't
change the function family.

O(n2) is Quadratic Time

def multiplicationTable(n):

for i in range(1, n+1):

for j in range(1, n+1):
print(i, "*", j, "=", i*j)

This seems tricky at first, but note that every iteration of the outer loop will do all
the work of the inner loop.

The inner loop does n total iterations (with O(1) work in its body). This is repeated
n times by the outer loop. Therefore, the entire runtime is O(n2).

When dealing with loops, use multiplication. Multiply the work done by the loop
body * the number of times the loop iterates.

28

O(2n) is Exponential Time

def move(start, tmp, end, num):

if num == 1:

return 1

else:

moves = 0

moves = moves + move(start, end, tmp, num - 1)

moves = moves + move(start, tmp, end, 1)

moves = moves + move(tmp, start, end, num - 1)

return moves

29

This is Towers of Hanoi. Every
time we add 1 disc we double the
number of moves. That's
exponential time, or O(2n).

O(2n+1) = O(2n) + O(2n)

For Recursion, Look at the Number of Calls

Is all recursion exponential? Not necessarily! It depends on the number of recursive calls
the function will need to make.

def countdown(n):

if n <= 0:

print("Finished!")

else:

print(n)

countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be made.
The function is O(n).

30

Be Careful of Built-in Runtimes!

def countAll(lst):

for i in range(len(lst)):

count = lst.count(i)

print(i, "occurs", count, "times")

This is actually O(n2), because each call to lst.count(i) takes O(n) time
and the loop iterates n times.

We'll let you know on assignments and quizzes when a built-in method or
operation is not constant time.

31

Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code.

def sumEvens(lst): # n = len(lst)

result = 0

for i in range(len(lst)):

if lst[i] % 2 == 0:

result = result + lst[i]

return result

32

Complex Big-O Example

Let's look at a more complex example together:

1: def example(lst): # n is len(lst)

2: result = []

3: for i in range(0, len(lst), 2):

4: if lst[i] != lst[i+1]:

5: average = (lst[i] + lst[i+1]) / 2

6: if average in lst:

7: result.append(average)

8: return count

33

Line 3 iterates n/2 times – we
should multiply that by the
work done by the loop body.

Line 4 is a conditional with a
constant check – add it to the
rest of the loop body.

Line 6 is a conditional with a
O(n) check – add n to the rest
of the body.

Lines 2, 5, 7, and 8 don't
depend on the size of the
input; they're constant
actions.Runtime: constant + n/2 * (constant + constant + n + constant) =

constant + constant * (n2) + constant * n = O(n2)

Calculating Function Efficiency Guidelines

Sequential statements: most statements are 1 action. Add the number of
statements together.

• Unless it has a built-in runtime! For example, item in lst is O(n).
• Functions/methods may have a non-constant runtime too.

Conditional statements: these are just like sequential statements; each
branch has the opportunity to happen at most once. Add them together.

Loops: these are different! Loops repeat the actions in the loop body a
certain number of times. Multiply the number of actions in the loop body by
the number of iterations performed.

34

Additional Learning: High-Speed Trading

Want more examples of how efficiency impacts real life? Check out this
podcast episode on high-speed computer trading (where milliseconds
make the difference between profit and loss):

https://radiolab.org/episodes/267124-speed

35

https://radiolab.org/episodes/267124-speed

Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function or algorithm's efficiency using Big-O
notation

36

