
Dictionaries
15-110 – Friday 10/07

Announcements

• Hw3 due on Monday

• Exam1 grades have been released! Median = 86.5/100; excellent
work!

2

Learning Goals

• Identify the keys and values in a dictionary

• Use dictionaries when writing and reading code that uses pairs of
data

• Use for loops to iterate over the parts of an iterable value

3

Data Structures Organize Data

So far, we've talked about efficiency in terms of algorithm design. We
can solve the same problem multiple ways, and some approaches are
more efficient than others.

We can also improve the efficiency of an algorithm by changing the
data structure we use to store incoming data. For example, a list is a
good for storing values in sequential (and indexed) order. What other
types of data might we work with?

4

Dictionaries

5

Python Dictionaries Map Keys to Values

The first data structure we'll discuss is the dictionary. Dictionaries store
data in pairs by mapping keys to values.

We use dictionary-like data in the real world all the time! Examples
include phonebooks (which map names to phone numbers), the index
of a book (which maps terms to page numbers), or the CMU directory
(which maps andrewIDs to information about people).

6

Key-Value Pairs

In a dictionary, a key-value pair is two values that have been paired together
for organizational purposes. We'll be able to access the value by looking up
the key, like how we can access a list value using its index.

For example, if we stored a phonebook in a dictionary, a key might be the
string "CMU", and its value would be the string "412-268-2000". It
wouldn't make sense to switch the roles because our default action is to look
up a phone number based on a name, not vice versa.

Note: keys must be immutable (numbers, strings, or Booleans), but values
can be any type of data. Why? We'll explain later, when we discuss more
search algorithms.

7

Python Dictionaries

Dictionaries have already been implemented for us in Python.

make an empty dictionary

d = { }

make a dictionary mapping strings to integers

d = { "apples" : 3, "pears" : 4 }

8

Python Dictionaries – Getting Values

Dictionaries are similar to lists. Instead of indexing by position, index by key:

d = { "apples" : 3, "pears" : 4 }

d["apples"] # the value paired with this key

len(d) # number of key-value pairs

If you try to access a key that doesn't exist, you'll get a runtime error.

d["ice cream"] # KeyError

We can also access all the keys or all the values separately:

d.keys()

d.values()

9

Python Dictionaries – Adding and Removing

How do we add a new key-value pair? Use index assignment with the key. This
works whether or not that key has been assigned a value yet. If the key is already in
the dictionary, the value for the key is updated; it does not add a new key-value
pair.

d = { "apples" : 3, "pears" : 4 }
d["bananas"] = 7 # adds a new key-value pair

d["apples"] = d["apples"] + 1 # updates the key-value pair

To remove a key-value pair, use pop with just the key as a parameter.

d.pop("pears") # destructively removes

10

Python Dictionaries – Search

We can search for a key in a dictionary using the built-in in operation.

d = { "apples" : 3, "pears" : 4 }

"apples" in d # True

"kiwis" in d # False

We can't use in to look up the dictionary's values; we need to loop
over the keys and check each key's value instead. How do we loop over
a dictionary? We'll get there in just a moment!

11

Activity: Trace the code

In the following code, the keys represent student IDs and the value represent
student names. After running the code, what key-value pairs will the
dictionary hold?

d = { 26: "Chen", 23: "Patrick" }

d[88] = "Rosa"

d[23] = "Pat"

d[51] = d[23]

if "Chen" in d:

d.pop("Chen")

12

For Loops over Iterables

13

Iterable Values and Loops

An iterable value is a value that can be looped over directly by a for loop. They are
often composed of some number of individual pieces of data (though not always).

So far, strings and lists have been iterable: a string is a sequence of characters and a
list is a sequence of values. Dictionaries are also iterable, as they're composed of
some number of key-value pairs.

With both strings and lists, the pieces of data were stored in an ordered sequence.
That meant we could index into the value to get an individual part and use a for
loop over a range to visit each part in turn.

A dictionary doesn't have indexes; it has keys. That means we can't loop over
dictionaries using a for loop with a range, as it isn't clear how we would set up the
range.

14

For Loops Can Repeat Over Iterable Values

We don't need a range to use a for loop. We can loop over the parts
of an iterable value directly by providing the value instead of a range.

for <itemVariable> in <iterableValue>:
<itemActionBody>

For example, if we run the following code, it will print out each string in
a list with an exclamation point after it.

wordlist = ["Hello", "World"]
for word in wordList:

print(word + "!")

15

For Loops on Dictionaries

When we run a for loop directly over a dictionary, the loop visits all key-
value pairs in some order. The loop control variable will hold the key of
each key-value pair. To access the value, you must index into the
dictionary with that key.

16

d = { "apples" : 5, "beets" : 2, "lemons" : 1 }
for k in d:

print("Key:", k)
print("Value:", d[k])

For-Range vs For-Iterable

When should you use a For-Iterable
loop instead of a For-Range loop?

For dictionaries, always use a For-
Iterable loop. There are no indexes,
so you can't use For-Range.

For strings and lists, you can iterate
directly over the values if you don't
need the indexes. For example, to
sum a list, you could use either:

result = 0

for item in lst:

result = result + item

or:

17

result = 0
for i in range(len(lst)):

result = result + lst[i]

Activity: countItems(foodCounts)

You do: write the function countItems(foodCounts) that takes a dictionary
mapping foods (strings) to counts (integers), loops over the key-value pairs, and
returns the total amount of food stored in the dictionary. The function should also
print the number of each individual food type as it counts up the total.

For example, if d = { "apples" : 5, "beets" : 2, "lemons" : 1 },
the function might print

5 apples

2 beets

1 lemons

then return 8.

18

Coding with Dictionaries

19

Coding with Dictionaries – Track Information

We often use dictionaries when
problem-solving. One common use
of dictionaries is to track
information about a list of values.

For example, given a 2D list of
students and their colleges (a list of
two-element lists of "student"
and "college"), how many
students are in each college?

We will create a dictionary with
colleges as the keys and the student
counts as the values.

def countByCollege(studentLst):

collegeDict = { }

for pair in studentLst:

name = pair[0]

college = pair[1]

if college not in collegeDict:

collegeDict[college] = 0

collegeDict[college] += 1

return collegeDict

countByCollege([["erhurst" ,"CIT"],
["neerajsa","SCS"], ["cosorio","DC"],
["dtoussai", "CIT"]]): 20

Coding with Dictionaries – Find Most Common

We also use dictionaries to find
the most common element of a
list, by mapping elements to
counts.

For example, given the dictionary
returned by the previous function,
which college is the most
popular?

def mostPopularCollege(collegeDict):

best = None

bestScore = -1

for college in collegeDict:

if collegeDict[college] > bestScore:

bestScore = collegeDict[college]

best = college

return best

21

Coding with Dictionaries – Nested Dictionaries

We can even use nested dictionaries in
a similar way to how we use nested (2D)
lists. Just map each key to another
dictionary (which will map other keys to
specific values).

For example, we can create a
multiplication table in a nested
dictionary (outer keys are x, inner keys
are y, values are x*y).

def createMultDict(n):

d = { }

for x in range(1, n+1):

innerD = { }

for y in range(1, n+1):

innerD[y] = x * y

d[x] = innerD

return d

m = createMultDict(4)

print(m[2][3]) # 6

22

Activity: hasShortKeys(d, limit)

You do: solve a Parsons Problem to write a program that takes a dictionary
mapping strings to numbers and a limit (a number) and returns True if all the keys
are at most the limit in length, and False otherwise.

For example, hasShortKeys({ "abc" : 2, "de" : 5}, 3) would return
True, but hasShortKeys({ "abc" : 2, "defgh" : 2}, 4) would return
False.

A Parsons Puzzle is an activity where you're given the lines of a program and need
to arrange and indent them into the correct configuration. Click the 'Get Feedback'
button to check your work!

Puzzle link: https://bit.ly/110-hasShortKeys 23

https://bit.ly/110-hasShortKeys

Learning Goals

• Identify the keys and values in a dictionary

• Use dictionaries when writing and reading code that uses pairs of
data

• Use for loops to iterate over the parts of an iterable value

24

