
Exam 1 Review
15-110 – Monday 10/03

Announcements

• Check3 was due today

• Exam1 on Wednesday!
• Bring your paper notes (<= 5 pages), something to write with, and your

andrewID card

• Arrive early if possible – we're checking IDs at the door

2

Announcements – Code Reviews

• Code reviews!
• What: meet with a TA for 10-15 minutes to get qualitative feedback on your code from your

Hw2 submission. Attending the meeting and actively participating gets you 5 points on
Check3.

• Why: code style and structure are important, but not assessed by the autograder. The TA will
point out different ways to solve the problems and areas where you can code more clearly or
more robustly
• Some students may be exempted from this meeting if they already have good style. Prof. Kelly will let

you know if you're in that group before sign-ups are released.

• When: this weekend (Friday-Sunday)
• Where: TA's choice

• Tutorial: how to sign up for a code review slot
• Link: TBA on Piazza
• Important: sign-ups for each TA slot close 5pm Friday
• Also important: don't be late! If you are more than 3 minutes late to your meeting, you will

not get credit on Hw3.
• If something comes up and you need to cancel, notify the TA at least an hour before your timeslot.

Do not do this multiple times. 3

Review Topics

• Half Adder, Full Adder, N-bit Adder

• Error Messages

• Indexing and Slicing

• Nesting

4

Addition in Circuits

5

Addition Using Circuits

Let's consider this problem a new way by starting from the goal and working
backwards. How can we teach a computer to add two numbers?

(Why do we care about this? Computers can only take actions that are built
into their hardware. We need to implement the core algorithmic actions –
including addition! – if we want to build programs that do interesting things.)

We can't just provide the computer numbers like 127 and 86- we have to
translate them to binary first. That way, the computer can store them as
high/low levels of electricity.

6

Adding Large Numbers

How do you as a human approach the task of adding two really large
numbers? You break it up into parts and solve each part independently.

1 2 7

+ 8 6

An n-bit adder will work the same way, by adding one column of
numbers at a time. But it will add binary digits, not decimal digits.

7

Adding a column of digits

Now we just need to teach the computer how to add a column of digits.

There are only three inputs (two digits and a carried digit), so treat this like learning the
multiplication table. Memorize all the possible inputs and their outputs.

0 + 0 + 0 = 00

0 + 0 + 1 = 01

0 + 1 + 0 = 01

0 + 1 + 1 = 10

1 + 0 + 0 = 01

1 + 0 + 1 = 10

1 + 1 + 0 = 10

1 + 1 + 1 = 11
8

Finding the Algorithm

Once you've made a truth table, you can look for patterns in the truth
table to derive an algorithm. That algorithm can then be made into a
circuit.

9

Cin X Y Cin + X + Y Cout Sum

1 1 1 11 1 1

1 1 0 10 1 0

1 0 1 10 1 0

1 0 0 01 0 1

0 1 1 10 1 0

0 1 0 01 0 1

0 0 1 01 0 1

0 0 0 00 0 0

Cout is 1 when at least two of Cin, X, and
Y are 1. Combine pairs with and, then
combine all three possibilities with or.

Sum is 1 if an odd number of Cin, X, and
Y are 1. Use xor on all three to get the
same result.

Put it all together

Once we have a circuit that can add a whole column of digits (a full
adder), just chain it together with other full adders to add as many
digits as you need.

We 'carry' digits by passing the Cout result from one column to the Cin

input of the next.

10

Half Adders

Why did we learn about half adders if they aren't used in the final n-bit
adders?

Half adders provide a simplified approach to adding a single column of
numbers. They only work when a number hasn't been carried over, but
it's easier to see how the table maps to the circuit.

11

Error Messages

12

Three Error Types

Syntax Errors – Python can't parse the code you've written into a meaningful
structure

• Illegal tokens, jumbled token order, missing tokens

Runtime Errors – Python can parse the code you've written, but something
goes wrong when it tries to run the code

• Type mismatch, out-of-bounds error, unknown variable

Logical Errors – Python can parse and run the code you've written, but the
result isn't what you wanted

• Caught using test cases with assert

13

Practice with Kahoot!

Let's do a Kahoot to practice recognizing errors in code.

Link: https://kahoot.it/

14

https://kahoot.it/

String Indexing and Slicing

15

Indexing Strings

In a string (or list), each character (item) has a specific position.
Positions start at 0 and go to len(value) - 1.

You can access an individual character from a string (item from a list)
with indexing, using square brackets with something that evaluates to
an integer.

s = "studying"

s[3] # "d"

16

Slicing Strings

You can also extract a substring from a string (or sublist from a list) using
slicing. Slicing uses square brackets with colons in between to specify the
start, end, and step of a slice.

If any of these three components are left blank, they evaluate to a default
value – 0 for start, len(value) for end, 1 for step. If the step is left to a
default, the second colon can also be removed.

lst = ["Ready", "for", "the", "exam"]

lst[0:len(lst):2] # ["Ready", "the"]

lst[2:] # ["the", "exam"]

17

You Do: Practice Coding with Indexing/Slicing

You do: write several short lines of code using indexing and slicing to
solve problems.

1. What slice would remove the first and last characters from a string s?

2. What index would access the middle character from a string s? (You
can assume it has odd length).

3. What expression would produce a 'doubled' version of a string s; for
example, the string "coding" would become "codcodinging"?

18

Nesting

19

Nesting Changes a Program's Control Flow

Nesting is the process of indenting control structures so that they occur
inside other control structures. It is used to manipulate the control flow
of a program to produce certain intended effects.

So far, we've learned about several control structures: function
definitions, conditionals, while loops, and for loops. All of these
structures have bodies, and each can be indented so it occurs inside
the body of another structure.

20

Common Nested Structures - Functions

Though any nesting configuration you can think of is possible, some
arrangements are more common than others.

Functions – we usually write function definitions at the top level of a
program, and nest conditionals/loops inside them when they're needed.
When we return in a nested conditional/loop, we exit that structure and the
whole function immediately.

def hasVowels(s):
for i in range(len(s)):

if s[i] in "aeiou":
return True

return False
21

Note how the loop is indented inside the
function, and its body is indented again.

If the line 'return True' is reached, the
function will exit immediately without
finishing the loop.

Common Nested Structures – Loop-Conditionals

Loop-Conditional – very often we nest a conditional inside a loop to check a
certain property for every element that is iterated over.

While it's possible to pair an else with the nested if, it's only used if there's a
clear alternative action. It's okay to do nothing on iterations that don't meet
the requirement!

def countVowels(s):
result = 0
for i in range(len(s)):

if s[i] in "aeiou":
result = result + 1

return result

22

We don't need to update
result if the letter isn't a
vowel, so do nothing instead.

Common Nested Structures – Nested Loop

Nested Loop – if you need to iterate over multiple dimensions, a nested loop
(one loop nested inside another) will manage the complex iteration. Each
loop control variable manages one dimension.

It's important that the two loop control variables have different names, so
that they can be referred to separately!

def coordinates(x, y):
for xNum in range(x):

for yNum in range(y):
print("(" + str(xNum) + ", " +

str(yNum) + ")")

23

The outer loop moves more 'slowly',
as it only iterates once for each
complete working of the inner loop.

You Do: Parsons Puzzle

A Parsons Puzzle is an activity where you're given all the lines of code in a program,
but you need to rearrange them and indent them to make the program work.

Arrange the program for the function sameChars, which takes two strings (s1 and
s2) and returns True if s1 contains only characters that also occur in s2 (and False
otherwise).

Hint: consider how you would solve this problem yourself. What order do the steps
need to take place in? Also, beware the distractor line!

Link: http://parsons.problemsolving.io/puzzle/2222cffb733d4361b93e73cd2f41879c

24

http://parsons.problemsolving.io/puzzle/2222cffb733d4361b93e73cd2f41879c

