
For Loops
15-110 – Monday 09/19

Announcements

• Check2 was due today

• Week1-2 revision deadline is tomorrow at noon

• Start Hw2 early! It's heavier than Hw1

2

Learning Goals

• Use for loops when reading and writing algorithms to repeat actions a
specified number of times

• Recognize which numbers will be produced by a range expression

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

3

For Loops

4

For Loops Implement Repeated Actions

We've learned how to use while loops and loop control variables to
iterate until a certain condition is met. When that loop control is
straightforward (increase/decrease a number until it reaches a certain
limit), we can use a more standardized structure instead.

A for loop over a range tells the program exactly how many times to
repeat an action. The loop control variable is updated by the loop itself!

for <loopVariable> in range(<maxNumPlusOne>):

<loopBody>

5

While Loops vs. For Loops

To sum the numbers from 0 to n in a while
loop, we'd write the following:

n = 10
i = 0
result = 0
while i <= n:

result = result + i
i = i + 1

print(result)

In a for loop using a range expression, the loop
control variable starts at 0 and automatically
increases by 1 each loop iteration.

n = 10

result = 0

for i in range(n + 1):

result = result + i

print(result)

We have to use n + 1 because range goes up
to but not including the given number. It's like
writing

while i < n + 1:
6

For Loop Flow Chart

Unlike while loops, we don't initialize or
update the loop control variable. The for
loop does those actions automatically.

We show actions done by the range
function with a dotted outline here,
because they're implicit, not written
directly.

n = 10

result = 0

for i in range(n + 1):

result = result + i

print(result)

7

i = 0

if i < n+1

result = result + i

i = i + 1

True False

result = 0

print(result)

loop body

n = 10

Activity: Translate the Flow Chart

You do: given the flow chart to
the right, write a program that
matches the flow chart. Use a for
loop, not a while loop.

What does the program print?

8

i = 0

if i <= 19

x = i - x

i = i + 1

True False

x = 0

print(x)

For Loops Manage the Loop Control Variable

Because the for loop manages the loop control variable, you can't
update it in the loop body.

If you try to change the loop control variable, it will revert back to the
next expected value on the following iteration. This happens because of
the range.

for i in range(10):

print(i)

i = i + 2 # should skip two ahead, but does not

9

Range

10

range Generates Loop Variable Values

When we run for i in range(10), range(10) generates the
consecutive values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for the loop control variable,
one value for each iteration.

We can also give range two arguments, a start and an end value. The
loop control variable begins with the start value, is incremented by 1
each iteration, and goes up to but not including the end value.

The following code would generate the numbers 3, 4, 5, 6, and 7.

for i in range(3, 8):

print(i)

11

range Also Has a Step

If we use three arguments in the range function, the last argument is the step of
the range (how much the loop control variable should change in each iteration).
The following example would print the even numbers from 2 to 10, because it
updates i by 2 each iteration.

for i in range(2, 11, 2):
print(i)

Any looping over numbers we can do in a for loop can also be done in a while loop.
In a while loop, the above code could be written as:

i = 2
while i < 11:

print(i)
i = i + 2

12

range Example: Countdown

Let's write a program that counts backwards from 10 to 1, using range.

for i in range(10, 0, -1):

print(i)

Note that i has to end at 0 in order to make 1 the last number that is
printed.

13

Activity: Predict the Printed Values

In this Kahoot quiz, predict what the loop will print based on its range.

Link: https://kahoot.it/

14

https://kahoot.it/

Coding with For Loops

15

Problem Solving with For Loops

Problem solving with for loops is similar to problem solving with while loops.
You need to identify the loop control variable, then find the correct start,
end, and step for it.

Example: how would you create a program that produces the pattern
"10-11-12-13-" using a for loop?

s = ""
for i in range(10, 14):

s = s + str(i) + "-"
print(s)

16

Nesting with For Loops

We can also nest for loops in
functions and conditionals in for
loops, just like with while loops.

For example, we can determine
whether or not a number is prime
using a for loop over all the number's
possible factors (from 2 up to but not
including the number itself).

Make sure to also check that the
number is positive and not 1!

def isPrime(num):
if num < 2:

return False
for factor in range(2, num):

if num % factor == 0:
return False

return True

17

Nested Loops

18

Nesting Loops

Importantly, we can also nest loops inside of loops!

We mostly do this with for loops, and mostly when we want to loop over
multiple dimensions.

for <loopVar1> in range(<endNum1>):
for <loopVar2> in range(<endNum2>):

<bothLoopsBody>
<justOuterLoopBody>

In nested loops, the inner loop is repeated every time the outer loop takes a
step.

19

Example: Multiplication Table

Suppose we want to print a multiplication table from 1x1 to 3x2.

for x in range(1, 4):

for y in range(1, 3):

print(x, "*", y, "=", x * y)

Note that every iteration of y happens anew in each iteration of x.

20

Tracing Nested Loops

We can use code tracing to find the values at
each iteration of the loops.

for x in range(1, 4):

for y in range(1, 3):

print(x, "*", y, "=", x * y)

Iteration x y x*y

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 4

5 3 1 3

6 3 2 6

21

Example: drawGrid(canvas, gridSize)

Let's write a function that draws a
grid using Tkinter.

Instead of repeating calls of
create_rectangle, we'll use
nested for loops (along with math
and logic) to determine where to
draw each square.

22

Sidebar: Function Call Canvas

Let's use a bit of code to generate
a new canvas in a function call.

We just need to add in our own
call to our drawing function in the
middle!

import tkinter

def runDrawGrid():

root = tkinter.Tk()

canvas = tkinter.Canvas(root, width=400,

height=400)

canvas.configure(bd=0,

highlightthickness=0)

canvas.pack()

drawGrid(canvas, 4) # your call here!

root.mainloop()

23

First, Draw a Row

Let's start simple by drawing a row of
cells instead of a whole grid. Note that a
row repeats cells over the X axis. Each
square will be 50 x 50 pixels in size.

Each square's top and bottom will be 0
and 50. The first square's left and right
are 0 and 50, second are 50 and 100, etc.

We'll want to loop over all possible
columns from 0 to gridSize-1. We'll
then draw a square for each.

Discuss: How can we calculate a square's
left and right positions abstractly using
only its column number?

Desired outcome:

24

sq 0 sq 1 sq 2 sq 3

y=0

y=50

x=0 x=50 x=100 x=150 x=200

Loop Over Columns

The first square starts at x coordinate 0;
the next is one square over, so it starts
at 50. The third square has two squares
before it, so it starts at 2 * 50; etc..

If we number the squares from 0 to 4,
each square's left side starts at
col * 50, where 50 is the size of the
square. Add 50 to that coordinate to get
the right side.

def drawGrid(canvas, gridSize):
for col in range(gridSize):
leftSq = col * 50
rightSq = leftSq + 50
canvas.create_rectangle(leftSq, 0,

rightSq, 50)

25

Draw Multiple Rows for a Grid

Now we just need to repeat the
logic that drew the first row. Take
the code from before and put it
inside an outer loop. Note that
the outer loop represents a cell's
row, while the inner loop
represents a cell's column.

Calculate the top of each cell
based on the value's row, using
the same logic that found the
column coordinates.

def drawGrid(canvas, gridSize):

for row in range(gridSize):

topSq = row * 50

bottomSq = topSq + 50

for col in range(gridSize):

leftSq = col * 50

rightSq = leftSq + 50

canvas.create_rectangle(leftSq,

topSq,

rightSq,

bottomSq)

26

Add Stripes with Conditionals

We can make the grid more
exciting by adding colors to the
cells, to draw stripes.

Stripes alternate by row or by
column. Check whether the
row/column is odd or even using
the mod operator.

if row % 2 == 0:

color = "red"

else:

color = "green"

canvas.create_rectangle(leftSq, topSq,

rightSq, bottomSq,

fill=color)

27

Learning Goals

• Use for loops when reading and writing algorithms to repeat actions a
specified number of times

• Recognize which numbers will be produced by a range expression

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

29

