15-110 Recitation Week 3

Reminders

- Check 2 due Monday 9/19 at Noon EDT!
- Check your email if a TA can't find you during OH
- HW 1 grades are out!
- Check 1 and HW1 Revisions (+Ex revisions) due 9/20 at Noon EDT
- For recitation today:
- There is a starter code file on the website
- Recitation feedback form: https://forms.gle/UeEH6nhVj7LRSMyh7

Overview

- Debugging
- Timed Function Practice
- Circuits and Gates

Problems

DEBUGGING

1. Rubber Duck Debugging
2. Printing and Experimenting
3. Thorough Tracing

Catch the Error:

These are also in the starter file, with some additional code to help you.
For each function, specify the type of error (syntax/runtime/logical), error name, and what the error means.

1) def computeIntAverage(x, y, z):
sum $=x+y+z$
count $=3$
return sum // count
print(computeIntAverage(5, "6", 7))

Type:	
Name:	
What it means:	

2) def findLineIntersect(m1, b1, m2, b2):
```
x = (b2 - b1) / (m1 - m1)
y = m1 * x + b1
print('y coord', y)
return x
```

Type:	
Name:	
What it means:	

3) \# leaving is a boolean that tells us if we should say hello or goodbye def sayHelloOrGoodbye(leaving, name):
if leaving == True:
return "Hello "+ name
else:
return "Goodbye, "+ name+ ", and have a great day!

Type:	
Name:	
What it means:	

4) import math
def circleArea(x0, y0, $x 1, y 1):$
minRad = x_1 - x0 / 2
maxRad = y1 - y0 / 2
area $=$ math.pi $*$ minRad $*$ maxRad return area

Type:	
Name:	
What it means:	

5) import math
def roundDistance(x1, y1, z1, x2, y2, z2): $\mathrm{dX}=\mathrm{x} 2-\mathrm{x} 1^{* *} 2$
$d Y=(y 2-y 1)^{* *} 2$
$d Z=\operatorname{pow}(2,(z 1-z 2))$
dist = math.ceil(dX + dY + dZ) ** 0.5 return dist

Type:	
Name:	
What it means:	

TIMED FUNCTION PRACTICE

To help prepare for the exam, we will use this as a practice for writing code with a time limit. You will have 5 minutes to write the code independently (your TAs will help time this for you). Take out a piece of paper and pen (not in Thonny) and write the code in paper, to simulate an exam environment.

You're a professor trying to get through exam grading during finals week. Unfortunately, you're the only instructor and there are just too many exams to grade. You realize that you can create a function that decides each student's grade based on how many pages their exam is and the last number of their student ID.

You end up with this grading scale (the student will fail if they turn in 0 pages):

Number of Pages	Last Digit of Student ID	Grade
More than 4	Even	A
More than 4	Odd	B
4 and under	Even	C
4 and under	Odd	D
0	-	F

Write the function studentGrade(numPage, studentID) that takes in the number of pages that the exam is and the student's full ID number and implement the above grading scale.
Note: You should nest if statements within the function and return early when necessary.

Ex: studentGrade(2, 123456) = "C"
\square

CIRCUITS AND GATES

Write the equivalent Boolean expression demonstrated by the circuit:

Fill out the truth table that corresponds to the circuit and boolean expression above:

\mathbf{x}	\mathbf{y}	output

