
Graphics
15-110 – Bonus Content

Tkinter Starter Code – Top-Level Version

In order to create graphics, we need to take a few
preliminary steps. These will be provided to you as
starter code.

First, create a new window- that's the thing that
pops up on the screen.

Second, create a new canvas- that's the thing we can
draw graphics on.

Next, pack the canvas into the window- that tells the
canvas to fill the whole window.

We'll do all our drawing here.

Finally, the last line will tell the window to stay open
until we press the X button.

import tkinter

root = tkinter.Tk()
canvas = tkinter.Canvas(root,

height=400,
width=400)

canvas.configure(bd=0,
highlightthickness=0)

canvas.pack()

write your code here

root.mainloop()

2

Tkinter Starter Code – Function Version

Once you've learned about function
definitions, you can also write Tkinter
code inside of functions!

We'll move the setup code into
makeCanvas, then call your graphics
function from makeCanvas.

We have to pass in canvas as a
parameter, but you can still use it the
same way as before.

import tkinter as tk # shorten library name

def draw(canvas):

pass

def makeCanvas(w, h):

root = tk.Tk()

canvas = tk.Canvas(root, width=w, height=h)

canvas.configure(bd=0,

highlightthickness=0)

canvas.pack()

draw(canvas)

root.mainloop()

makeCanvas(400, 400)
3

Drawing a Rectangle

To draw a rectangle, we use the function create_rectangle in our
draw function. This function takes four required parameters: the x and
y coordinates of the left-top corner, and the x and y coordinates of the
right-bottom corner. The rectangle will then be drawn between those
two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

4

Drawing an Oval

We can draw more shapes than just rectangles. To draw an oval,
use create_oval. This function uses the same parameters as
create_rectangle, where the coordinates mark the oval's
bounding box.

canvas.create_oval(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

5

Drawing Squares/Circles

If you want to draw a square or a circle, you need to ensure that the
width of the shape equals the height.

How can you do that? Make sure that (right - left) is equal to (bottom -
top)!

canvas.create_rectangle(50, 100, 150, 200)

6

Keyword Arguments Add Variety

With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument is associated with a specific name
instead of a position in the call. We can put keyword arguments in any order
we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")

7

Keyword Argument - fill

The fill argument can be used on any
shape. It uses a string (the name of the color)
to change the color of the shape.

Note that when we draw shapes on top of
each other, the one on top is the last one
called. Order matters!

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_oval(30, 80, 150, 200, fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

8

Sidebar: Hexadecimal Numbers For Colors

What if we want to define our own colors, by using the RGB system we
discussed in the Data Representation system? Python lets us do this, but
we'll need to represent the RGB values in a new number system.

We use the hexadecimal number system to represent a byte with just two
digits. This number system uses base 16. In comparison, normal decimal uses
base 10 and binary uses base 2.

The digits of hexadecimal are : 0123456789ABCDEF

Example: 01111011 = 7B, because 0111 is 7 and 1011 is 11 (B).

9

Making New Colors

To define a new color, make a string "#RRGGBB", where you replace
RR with the red value in hex, GG with green, and BB with blue.
"#FF69B4" is hot pink!

canvas.create_oval(30, 80, 150, 200, fill="#FF69B4")

Interested in finding more Tkinter color names? There's a whole
databank!
https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

10

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

Keyword Argument - width

Another keyword argument is width, which
specifies how many pixels wide the border of the
shape should be.

Note that setting width to 0 removes the border
completely.

canvas.create_rectangle(40, 40, 80, 140, width=5)

canvas.create_oval(30, 80, 150, 200,
width=20, fill="green")

canvas.create_rectangle(90, 70, 180, 120,
fill="blue", width=0)

11

Drawing Lines

To draw a line on the screen, you
specify the two endpoints of the
line.

Again, we can use fill and
width to modify the lines.

canvas.create_line(200, 300, 400, 350)

canvas.create_line(20, 100, 90, 300, fill="green")

canvas.create_line(100, 100, 300, 300, width=5)

12

Drawing Polygons

To draw a polygon, you need to specify the coordinates of each of the
polygon's points as an x, y coordinate, in perimeter order.

The polygon can have as many points as needed but will need at least
three points to appear.

canvas.create_polygon(10, 10, 50, 150, 100, 50)
canvas.create_polygon(200, 200, 400, 400, 0, 400,

fill="orange")
canvas.create_polygon(200, 100, 300, 0,

400, 100, 300, 200,
outline="green", width=5)

Note here that we've also added a new keyword argument – outline,
which specifies the color of the shape's outline.

Drawing Text

Drawing text on the canvas works a bit differently from drawing
rectangles, ovals, lines, and polygons. We specify only one coordinate –
the pixel where the center of text will be drawn.

canvas.create_text(200, 200, text="Hello World")

Although text is keyword argument and technically optional, text is
required in order to draw text at all.

14

Keyword Argument - font

When drawing text, we can use the keyword argument font to
change the appearance of the text.

The font parameters takes a string with one to three pieces of
information – the font name, the font size, and the font type.

You can find a full list of fonts and types here:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/fonts.html

canvas.create_text(200, 200, text="Hello World!",
font="Arial")

canvas.create_text(100, 100, text="This is fun!",
font="Times 30")

canvas.create_text(300, 300, text="weewooweewoo",
font="Courier 10 italic")

15

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/fonts.html

Keyword Argument - anchor

The point used in the canvas.create_text call is
actually an anchor for the text, to describe where it is
drawn from. That anchor defaults to the center of the
text box, but we can change it to be any compass point
instead.

Note that the anchor describes the point on the text
box that will correspond to the (x, y) coordinate. Since
CCC's anchor is "ne" (north-east), the upper-right
corner of the text box is placed at (400, 0).

canvas.create_text(200, 200, text="AAA",
font="Times 30", anchor="center")

canvas.create_text(0, 200, text="BBB",
font="Times 30", anchor="w")

canvas.create_text(400, 0, text="CCC",
font="Times 30", anchor="ne")

16

Drawing images

If we want to use a pre-made image in Tkinter, we can load one in as a
PhotoImage. This can be created with:
img = tkinter.PhotoImage(file="sample.gif")

We can resize the image if needed, using subsample to make it smaller and
zoom to make it bigger.
img = img.subsample(5) # make the image 5 times smaller
img = img.zoom(2) # make the image twice as large

Unfortunately, PhotoImages can only be .pgm, .ppm, and .gif files. For more
filetypes, use the external module Pillow (we'll learn about external modules
later in the course).

Drawing images

Once you've created an image, you can draw it with create_image.
This method takes the x, y coordinates of the image and can have other
optional parameters:

the image to be displayed. not really optional...

canvas.create_image(200, 100, image=imageVar)

the anchor point of the coordinate.

Same as for text, default "center"

canvas.create_image(200, 100, image=imageVar, anchor="n")

Tkinter Can Do Even More!

There's plenty of things Tkinter can draw and plenty of additional
keyword arguments that we haven't covered here.

If you're interested in learning more, check out the Tkinter
documentation:
https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

19

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

