Function Calls

15-110 — Wednesday 09/07

* Checkl was due at noon today. If you forgot to turn it in, you can still
submit up until the revision deadline!

 We'll try to get feedback released within 24 hours

* Note that Hw1 has a programming component. This will be
completed in a separate Python file.

* Tutorial: how to use and submit the programming starter file

* [Lecture 1] Looking for a peer notetaker
* Contact Prof. Kelly if interested

e Use function calls to run pre-built algorithms on specific inputs

* |dentify the argument(s) and returned value of a function call

 Use libraries to import functions in categories like math, randomness,
and graphics

Repeating Actions is Messy

Sometimes we want to perform the
same algorithm many times on different
inputs.

For example, say we want to personalize
a young child's reading material so that
it uses their pet's name.

We could copy and paste the first bit of
code, then change the necessary parts.
But if we're sloppy this might cause
errors.

petl = "Spot"”

pet2 = "Stella”

pet3 = "Kimchee"

print("See " + petl
" run. Run, "

print("See " + pet2
" run. Run, "

print("See " + pet3
" run. Run, "

+ o+

+ o+

-+

. See
petl +

ll. See [1]

pet2 +

. See
pet3 +

+ petl +
", run!™)

+ pet2 +
, run!")

+ petl +
, run!™)

A better approach is to put the core action being repeated into a
function.

A function is a code construct that represents an algorithm. We can
define a function once, then call it many times.

We can also use functions that have already been defined by Python.

Function Calls

We've already seen how to call a function on a specific input, because
print isjust a function! This is done using parentheses.

functionName (inputl, input2, ...)

The number of inputs provided inside the parentheses depends on how
many inputs the function expects. Each input should be an expression.

A Few New Functions

To help us explore how functions work, let's introduce a few new

functions. These are built-in functions, like print; that means we can
call them in Python directly.

abs(-2) # absolute value
pow(2, 3) # raises a number to the given power
round(12.4567, 2) # rounds to the given # sig digs

There's another built-in function that works differently from the others.

input(msg) displays a message in the interpreter, lets the user type a

response in the interpreter, then stores the response as a string when
the user presses enter.

input("Enter your name: ") # whatever the user typed

This will make it possible for you to write interactive programs more
easily! This will also let the user enter data interactively.

Type Functions

There are a few other built-in functions that are helpful to know, as they let
you change the type of data values. This is called type-casting, and it is
especially useful when you need to change the type of user input.

int("4") # converts a value to an integer
float(3) # converts a value to a float
str(98.9) # converts a value to a string
bool(0) # converts a value to a Boolean

type(4 + 3.0) # returns the type of the eventual value
uses the names we covered before - int, float, str, bool

10

The functions we call may have two core components:

Argument(s) — the values that are provided inside the parentheses, the
input

Returned Value — what the function evaluates to after running, the
output

The specific inputs we provide to a function are called arguments. These are
like the specific bread, peanut butter, and jelly we used in the PB&J
algorithm. In the function call abs(4), the argument is 4.

Arguments are separated by commas and placed between the parentheses
of the function call. Functions can require as many (or as few) arguments as
needed.

The positions of the arguments usually have meaning. In pow (2, 3), the
first argument is the base and the second argument is the exponent. In other
words, pow(2, 3) and pow(3, 2) mean two different things.

When a built-in function takes its arguments and runs through its
algorithm, we cannot see what it is doing.

When the function is done, it sends back an output as a returned
value. We usually say a function returns a value. This value substitutes

in for the function call the same way a variable's value substitutes in for
the variable.

For example, the returned value of pow (2, 3) is 8.

Function calls evaluate to a single returned value; that means they are
expressions. Therefore, we can nest function calls inside other
expressions the same way we nest basic values and operations.

print(round(pow(abs(-12), 1/2), 2))

Just like in math, functions follow order of operations using
parentheses. Start by evaluating the inner-most expressions,

abs(-12) and 1/2. Then evaluate the call to pow; then evaluate the
call to round. Finally, evaluate the call to print.

14

You do: write a line of code in the interpreter that takes a variable x

which holds a number as a string, turns it into an integer, and then
doubles that integer.

For example, if x = "21", then your line of code should produce 42

If a function produces no explicit output, it still has a returned value — we
need something to store in a variable or display. That value is the built-in
value None.

None means that there was no explicit output to be returned. Like True and
False, its meaning is built into Python, so it does not need quotes.

If you try to set a variable to a print call, you'll find that the variable holds
None. Note that None does not show up in the interpreter unless you

explicitly print it; the interpreter just shows a blank instead. >>> Nor)et(N)
prin one

None

>>> |

If print doesn't have an explicit returned value, what exactly is it doing? Recall
that a program has a state that holds the current information that the program
knows (what has been printed, what values do variables hold).

Function calls themselves are expressions, as they evaluate to a data value (the
returned value). But sometimes a function changes the program state in an
observable way as it is running; for example, it might display values in the
interpreter, or modify a file, or produce graphics. This is called a side effect.

If we call pow(2, 3),thereis no observable side effect. However, input ("How
are you?") has an observable side effect: it prints a message to the screen and
pauses the program until the user responds. input also has a returned value — the
message typed by the user.

Function Call Process

Argument(s)

|

Function

|

Returned Value

A
o

Side
effect(s)

18

It's easy to get confused about whether something is a side effect or a
returned value. Why are these two things different?

The way we've set up function calls means that there must be exactly one
output: the returned value. A function call might have no side effects, or
one, or many; however, every function call has one returned value.

Importantly, returned values can be saved in a variable and/or used in future
computations. Side effects cannot be saved this way; we simply observe
them.

Consider the following two function calls. For each function call, what

are its argument(s) and returned value? Does it have any observable
side effect(s)?

round(3.14159, 1)

pr\int(ll15ll + ll_ll + "11@")

20

Libraries

The Python language has a ton of pre-built functions, but most aren't
included in the built-in package (the one available by default). Most of
the functions are organized into separate libraries.

To use a function from a library, you must import the library. This
makes it possible to access the functions and variables in that
collection. You can do this with the code:

import libraryName

How can you determine which functions exist in which libraries? Read
the documentation!

All the Python libraries have documentation online that describes
which functions are available and what they do. Find it by going to

docs.python.org/3/.

There are a great many libraries and functions, so it's better to check
the documentation as needed than to try to memorize all the functions

that exist.

https://docs.python.org/3/

Importing the math Library

For example, we can import the math library to add more
mathematical capabilities. Note that we must put math. in front of
each function or variable name we use, to specify it came from that
library.

import math

mat
mat
mat
mat

N

N
N
N

.ceil(6.5) # ceiling of a float number
.log(64, 2) # finds the log of 64 with base 2
.radians(90) # converts degrees to radians
.pi # it's m!

24

Importing the random library

Importing libraries lets us get more creative with programming. For example, the
random library lets us generate random numbers, which can help produce novel
behavior.

import random

random.randint(1l, 10) # picks a random int between 1-10 inclusive
random.random() # picks a random float between 0-1

25

Finally, to get really creative, we can produce graphics with
programming! We'll do this with the tkinter library, which makes it
possible to draw shapes on a separate screen.

import tkinter

Tkinter Starter Code

We need to run some code before
and after our graphics code to make
it work.

The root is the window. The
canvas is the thing on the window
where we can draw shapes.

The root.mainloop() line will tell
the window to stay open until we
press the X button.

import tkinter

root = tkinter.Tk()
canvas = tkinter.Canvas(root,
height=400,
width=400)
canvas.configure(bd=0,
highlightthickness=0)
canvas.pack()

write your code here

root.mainloop()

27

The canvas created by the starter code is the thing we'll draw graphics on. It's a
two-dimensional grid of pixels. This grid has a pre-set width and height; the
number of pixels from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these
coordinates are different from coordinates on mathematical graphs — the origin
starts at the top left corner of the canvas.

(0, 0) (width, 0)
canvas

(0, height) (width, height)

To draw a rectangle, use the function canvas.create rectangle.
This function takes four required arguments: the x and y coordinates of
the left-top corner, and the x and y coordinates of the right-bottom
corner. The rectangle will then be drawn between those two points.

canvas.create rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

29

With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument that is associated with a specific name
instead of a position in the function call. We can put keyword arguments in
any order we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create rectangle(50, 100, 150, 200, fill="green")

Keyword Argument - fill

The ¥111 argument can be used to give a rectangle a

color. It uses a string (the name of the color) to change
the color of the shape.

canvas.create rectangle(40, 40, 80, 140, fill="red")

canvas.create_rectangle(30, 80, 30 + 120, 80 + 120,
fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

Note that when we draw shapes on top of each other,
the one on top is the last one called. Order matters!

31

When the rectangle is drawn on the canvas, we can't use it in future
computations. That's a side effect.

The graphics function call also returns something — an integer ID
associated with the drawn shape. We won't use that value in this class.

You can draw a lot more than just rectangles with Tkinter graphics!
Check out the bonus slides on graphics to find more shapes and
keyword arguments.

e Use function calls to run pre-built algorithms on specific inputs

* |dentify the argument(s) and returned value of a function call

 Use libraries to import functions in categories like math, randomness,
and graphics

