Data Analysis —
Modeling and Parsing

15-110— Monday 11/14

* Hw5 was due today
* Howdid it go?

* Exam2 grades released
 Median: 77.5. A little low, probably because #3 was harder than intended.

* We've curved the exam by 3 points to make up for this.

* Note that this too-difficult curve only applies to #3. If you struggled on some of the other problems (especially
#4 or #9), you should practice those topics to build up fluency with the concepts!

Our next unit focuses on how computer science can be used to benefit
other domains.

We'll investigate three different applications of computer science: data
analysis, simulation, and machine learning.

These three applications share a core idea in common: all three
organize data to help people answer questions.

Hw6 and its Checks work differently from thedprior assignments. Instead of
soIving a bunch of small problems, you'll build a guided project that uses
one of the three applications to solve an interesting problem in another field
using programming.

The programming problems in Check6-1 will support the work in Check6-2,
and the code from both will support the work in Hw6.

Because of this, revision deadlines are earlier for these assignments. Make
sure to start each assignment promptly!

(There are also short written assignments for Check6-1 and Check6-2 that
cover the lecture content — don't forget to do those too).

To get started on Hw6, review the General Guidelines:
https://www.cs.cmu.edu/~110/hw/hw6 general.pdf

Once you've picked a project, download the instructions & starter files from
the table at the bottom of the assignments page:

https://www.cs.cmu.edu/~110/assisnments.html

Then fill out this form to let us know which project you're doing (deadline
Friday 11/18 at noon):

https://forms.gle/rV7PAxJ1r1iBrzkK7

https://www.cs.cmu.edu/~110/hw/hw6_general.pdf
https://www.cs.cmu.edu/~110/assignments.html
https://forms.gle/rV7PAxJ1r1iBrzkK7

* |dentify whether features in a dataset are categorical, ordinal, or
numerical

* Interpret data according to different protocols: CSV and JSON

» Use string operations and methods to extract data from plaintext

* Reformat data to find, add, remove, or reinterpret pre-existing data

Data Analysis

Data Analysis is the process of using computational or statistical
methods to gain insights about data.

Data Ana
In many ¢

and fraud

ysis is used widely by many organizations to answer questions
ifferent domains. It plays a role in everything from advertising
detection to airplane routing and political campaigns.

Data Analysis is also used widely in logistics, to determine how many
people and how much stock is needed and where they should go.

Data Analysis Process

Our focus
The full process of data :
. . _ Exploration
analysis involves multiple Hypothesis Data Data 5
steps to acquire data, Generation Collection Cleaning

Visualization

prepare it, analyze it, and
make decisions based on
the results.

We'll focus mainly on three Presentation Insig-h't & Statistics
steps: Data Cleaning, A & Dl\jcif.'on 0 8|‘ :
Exploration & Visualization, cHon RS HEVEE
and Statistics & Analysis

Before diving into data analysis, we have to ask a general question.
What does data look like?

Data varies greatly based on the context; every problem is unique.

Example: let's collect our own data! Fill out the following short survey:
https://bit.ly/110-ice-cream-f22

10

https://bit.ly/110-ice-cream-f22

Let's look at the results of our ice cream
data.

Most likely, there are some irregularities in
the data. Some flavors are capitalized; others
aren't. Some flavors might have typos. Some
people who don't like ice cream might have

put 'n/a', or 'none’, or 'I'm lactose intolerant'.

And some flavors might have multiple names
—'green tea' vs. 'matcha’.

Data Cleaning is the process of taking raw

data and smoothing out all these differences.

It can be partially automated (all flavors are
automatically made lowercase) but usually
requires some level of human intervention.

Flavor 1

1

2 green tea

3 Jasmine Milk Tea
4 Mint Chocolate Chip
5 Vanilla

6 Vanilla

7 Coffee!

8

9 grapenut
10 Chunky Monkey
11 Yam

Flavor 2

strawberry
Vietnamese Coffee
Rocky Road
Strawberry

Coffee

Mint chip

Peppermint stick
Mint Chocolate Chip
Vanilla

Flavor 3

cookies and cream

Thai Tea

Chocolate

Cookies and Cream
Pistachio

birthday cake BATTER (try tt

Chocolate
Coffee
Oreo

When we work with simple data, that data often falls into one of three types. These types will
determine what analyses we run.

Categorical: Data fall into one of several categories. Those categories are separate and cannot
be compared.

Example: style of house (ranch, split-level, two-story, duplex, Victorian, etc.)

Ordinal: Data fall into separate categories, but those categories can be compared — they have
a specific order.

Example: what is the condition of the house? (poor, fair, good, excellent, new)

Numerical: Data are numbers. We can perform mathematical operations on it and compare it
to other data.

Example: how large is the house in square feet?

You do: what type of data are our ice cream flavors — categorical,
ordinal, or numerical?

What if we added a column asking how many times the person ate ice

cream in the past week? Would that be categorical, ordinal, or
numerical?

Data Formats — CSV and JSON

When reading data from a file, you need to determine what the
structure of that data is. That will inform how you store the data in
Python.

We'll discuss two formats here: CSV and JSON. Then we'll discuss how
to deal with plaintext (text data not in a specific format). Many other
formats exist, though!

First, Comma-Separated Values (CSV)
files store data in two dimensions.
They're effectively spreadsheets.

The data we collected on ice cream was
downloaded as a CSV. If we openiitin a
plain text editor, you can see that values
are separated by commas.

These files don't always have to use
commas as separators, but they do
need a delimiter to separate values
(maybe spaces or tabs).

,Flavor 1,Flavor 2,Flavor 3

133}

2,green tea,strawberry,cookies and cream
3,Jasmine Milk Tea,Vietnamese Coffee,Thai Tea
4 ,Mint Chocolate Chip,Rocky Road,Chocolate
5,Vanilla, Strawberry,Cookies and Cream
6,Vanilla,Coffee,Pistachio

7,Coffee! ,Mint chip,birthday cake BATTER (try t
8”}

9,grapenut,Peppermint stick,Chocolate

1@, Chunky Monkey,Mint Chocolate Chip,Coffee
11,Yam,Vanilla,Oreo

12,cherry,Matcha,Chocolate
13,Strawberry,Vanilla,chocolate chip

14,dulce de leche,Vanilla,Coffee
15,Vanilla,Banana, Strawberry

16,Cookie Dough,Cookies and Cream,Triple Fudge
17,Vanilla,Mocha, Strawberry

18,Butter Pecan,Cotton Candy,Mango
19,Turtle.Cookies and Cream.Vanilla

We could open a CSV file as plaintext and
parse the file as we read it. Or we could use
the csv library to make reading the file
easier.

This library creates a Reader object out of a
File object. That object can be cast to a 2D
list, where each inner list corresponds to a
line in the file, and the elements on the line
(as separated by the delimiter) are the
elements of the inner lists.

We can pass keyword arguments into the
csv.reader call to set the delimiter.

import csv

f = open("icecream.csv", "r")
reader = csv.reader(f)

data = list(reader)
print(data)

f.close()

17

Writing CSV Data to a File

What if we've processed data in a 2D list
and want to save it as a CSV file?

Create a CSV Writer object based on a file.
You can use it to write the 2D list using
writer.writerows(row).

Again, the delimiter can be set to values
other than a comma by updating the
optional parameters.

import csv

data = [["chocolate", "mint chocolate",
"peppermint"”],
["vanilla", "matcha", "coffee"],
["strawberry", "mango", "cherry"]]

f = open("results.csv", "w", newline="")
writer = csv.writer(f)

writer.writerows(data)

f.close()

18

Second, JavaScript Object
Notation (JSON) files store data
that is nested, like trees. They are
commonly used to store
information that is organized in
some structured way.

JSON files can store data types
including Booleans, numbers,
strings, lists, dictionaries, and any
combination of the above.

"vanilla" : 10,
"chocolate” : {
"chocolate" : 15,
"chocolate chip" : 7,
"mint chocolate chip" : 5
}s
"other" : ["strawberry", "matcha", "coffee"]

The easiest way to read a JSON file into
Python is to use the JSON library.

This time, we'll use json.load(file).
This function reads text from a file and
produces a piece of data that matches the
type of the outermost data in the text
(usually a list or dictionary).

In our example from the last slide, the
function would produce a dictionary
mapping strings to integers, dictionaries,
and lists.

import json

open("icecream.json", "r")
json.load(f)

print(j)

f.close()

20

Writing JSON Data to a File

What if we want to store JSON data import json
in a file for later use?

d = { "vanilla" : 10,

Again, use the JSON library. The "chocolate” : 27,
json.dump(value, file) "other" : ["strawberry", "matcha", "coffee"]
method will take a JSON- }

compatible value and write it to a
file in JSON format.

f = open("results.json", "w")
json.dump(d, f)
f.close()

21

You do: which data format would you use to store the following types
of data?

A) A hierarchical representation of employees in a company, organized
based on who reports to whom.

B) A table of tax data where each person in the table has several
columns of financial information.

Extracting Data from Plaintext

A lot of the data we work with might not fit nicely into either a CSV or
JSON format. If we can read this data in a simple text editor but can't fit
it into a standard format, we call it plaintext data.

To work with plaintext, you need to identify what kinds of patterns
exist in the data and use that information to structure it. The patterns
you identify may depend on which question you're trying to answer.

When parsing data in a plaintext file, start by identifying the pattern;
then ask yourself a few questions about that pattern.

* Does the pattern occur across lines, or some other delimiter?
* Where is the information in a single line/section?
* What comes before or after the information you want?

Once you've identified where the information is located, use string slicing and
string methods to separate out the information you need.

Slicing (s[start:end:step]) can be used to remove parts of the data that are
unnecessary.

The split method (s.split("."))can be used to break up data that is separated
by a known delimiter.

The index method]gs .index(":"))can be used to find the location of the
beginning or end of a section. That can be combined with slicing or splitting to
isolate the needed data.

The strip method (s.strip())can be used to remove whitespace (spaces, tabs,
and newlines) from the front and back of a string. This is useful for isolating the
core text of a string.

chat.txtisa 14:54:28 , From Malika : Could I use recursion
dataset based on a for AuthorMap:

chat log from a 14:56:03 From Ed : yep

previous class. (All 15:00:22 From Arman : what is str.digits?
student names have 15:01:21 From Margaret Reid-Miller to
been modified to Kelly Rivers(Privately) : We only hear the music
preserve student when you speak

15:08:31 From Ed : how would you know if it

prlvacy)' were O(n**.5)?

How could we get the
names of everyone
who participated in
the chat? What's the
pattern?

Example: Parsing a Chat Log

f = open("chat.txt", "r")

Each message occurs on an text = f.read()
individual line; split the text based f.close()
on newlines ("\n").

people = []

for line in text.split("\n"):
"From" occurs before each name start = line.index("From") + \
and " : " occurs afterwards. len("From™)
index to find those locations and line = line[start:]
slice based on them. end = line.index(" : ")

line = line[:end]

line = line.strip()

Use strip to clear extra ~ people.append(line)
whitespace. print(people)

28

Example: Parsing a Chat Log

A few lines don't match the " line = line[:end]

pattern; account for those too. if "(Privately)" in line:
end = line.index("to")

line = line[:end]
line = line.strip()

If statements are useful when
something breaks a pattern.

29

Moditying Data

Once we've parsed our data into an appropriate format, we may need
to change the structure to achieve the analysis we want. This is very
common in data analysis.

Let's assume that we're working with a 2D list produced from the ice
cream data. How can we:

* change all the flavors to be lowercase?
* remove the timestamps from the dataset?
e add a new column that counts the number of chocolatey favorites?

Update Values with Index Assignment

To update a value, access the # Assume data is a 2D 1list parsed from the file

appropriate column in each rowand ~ for row in range(len(data)):
: for col in range(len(data[row])):
change it.

Make all flavors lowercase

data[row][col] = data[row][col].lower()

For example, you might want to print(data)

convert a string to a different type via
type-casting.

32

Remove Values with pop()

To remove a value, pop an element of # Assume data is a 2D list parsed from the file
each row based on the column that for row in range(len(data)):

dat . @) # remove the ID
needs to be removed. ata[row].pop(e) v
for col in range(len(data[row])):
. # Make all flavors lowercase
For example, you might want to
. data[row][col] = data[row][col].lower()
remove user IDS when anonymizing :
print(data)

data.

33

Add Values with append()/insert()

To add a value, append or insert a # Assume data is a 2D 1list parsed from the file

new value into each row, potentially ~ for row in range(len(data)):

. . data[row].pop(©) # remove the ID
based on the pre-existing values. [row].pop(8)
chocCount = 0 # count number of chocolate

for col in range(len(data[row])):
Make all flavors lowercase
data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:

chocCount += 1
track chocolate count
data[row].append(chocCount)
print(data)

You can add data from a separate-but-
connected dataset, or by performing
small analyses on the existing data.

34

Headers are Special Cases

When using headers, make sure to
treat them appropriately!

It's often easiest to skip the Ot row in
the loop and deal with it separately
instead.

Assume data is a 2D list parsed from the file
for row in range(len(data)):

data[row].pop(@) # remove the ID
chocCount = @ # count number of chocolate
for col in range(len(data[row])):
Make all flavors lowercase
data[row][col] = data[row][col].lower()
if "chocolate" in data[row][col]:
chocCount += 1
track chocolate count
if row ==
data[row].append("# chocolate")
else:
data[row].append(chocCount)

print(data)

35

* |dentify whether features in a dataset are categorical, ordinal, or
numerical

* Interpret data according to different protocols: CSV and JSON

» Use string operations and methods to extract data from plaintext

* Reformat data to find, add, remove, or reinterpret pre-existing data

