
Programming Basics
15-110 – Wednesday 08/31



Announcements

• Over 90% of students completed Ex1-1: well done!
• If you haven't completed it yet, you still can! Exercises can be submitted late 

under the revision policy.

• First recitation tomorrow!
• Make sure to go to your registered room & time

• You can (and should) start assignments early! Each question is labeled 
with the lecture that covers it.
• Tutorial: how to download & work on written assignments

2



Learning Objectives

• Recognize and use the basic data types in programs

• Interpret and react to basic error messages caused by programs

• Use variables in code and trace the different values they hold

3



Python and IDEs

4



Programs are Algorithms for Computers

Computers only know how to do what we tell them to do. Programs
communicate with a computer and tell it what to do.

Algorithms can be expressed as programs in many different 
programming languages. Different languages use different syntax
(wording) and commands, but they all share the same set of 
algorithmic concepts.

In this class, we'll use Python, a popular programming language.

5



Python is Simple and Highly Useful

The Python programming language is designed to be easy to read and 
simple to implement algorithms in.

There are also a huge number of libraries that implement useful things 
in Python. We'll use libraries that support graphics, data analysis, 
randomness, and more.

Python's main weakness is efficiency − it can be slower than other 
languages. But that won't matter for our purposes.

6



An IDE is a Text Editor for Programs

When writing programs, we use IDEs – Integrated Development 
Environments. These are like text editors for programs.

In this class, we recommend that you use the Thonny IDE. It is fairly 
lightweight, which makes it good for novices.

We will mostly use two parts of the Thonny IDE while writing code- the 
editor and the interpreter.

7



Write in the Editor, Run in the Interpreter

The editor is just a normal text editor. 
When we save text, it is saved to a .py
file, but this is still just normal text.

The interpreter (or shell) does the 
actual work of converting our Python 
text into instructions the computer can 
run. This happens when you click Run 
Current Script from the Run menu.

We can also run single lines of code in 
the interpreter directly. We'll start by 
doing that. In general, use the 
interpreter to run short tasks and the 
editor for long tasks.

8

editor

interpreter



Data Types

10



Data Is Information We Can Manipulate

Most programs we write will keep track of some kind of information  
and change it with actions. We call that information data.

Data have different types depending on their properties. We'll start by 
going over three core types: numbers, text, and truth values.

Data can also be combined using operations. We'll show some basic 
operations for each data type.

11



Numbers and Operations in Python

Numbers can be represented by two types in Python:
• Integers (0, 14, -7) are whole numbers.
• Floating point numbers (3.0, 5.735, 8e10) include a decimal point.

Numbers can also be combined using math operators:
+ : addition
- : subtraction
* : multiplication
/ : division
** : power (2**3 = 8)

Python can combine multiple operations together as a whole and follows order of 
operations. Use parentheses ( ) to specify the order as needed.

An expression like 4**2 or (5-2)/3 is a piece of code that evaluates to a data value. You 
tell the interpreter to evaluate a piece of code by pressing Enter.

12



Text in Python

Text values in Python are called strings. Text is recognized by Python 
when it is put inside of quotes, either single quotes ('Hello') or 
double quotes ("Hello"). 

Strings can be concatenated together using addition.

E.g, "Hello" + "World" produces "HelloWorld". 

Strings can also be repeated using multiplication with an integer!

E.g, "Hello" * 3 produces "HelloHelloHello"

13



Truth Values in Python

Finally, Python can evaluate whether certain expressions are true or false. These 
types of values are called Booleans after the mathematician George Boole.

Booleans can be either True or False (no quotes, and capitals are required). These 
names are built into Python directly.

To get a Boolean, we can write True or False directly, or do a comparison. The 
basic comparison operators are familiar: <, >, <=, and >=.

We can also check if two values are equal (==), or not equal (!=). 

E.g., "Hello" == "World" evaluates to False

14



Type Mismatches Cause Errors

Be careful when mixing types in Python, as that can cause error messages when the types 
don't go together well. An error message is how the computer tells you it doesn't 
understand a command you wrote.

For example, "Hello" + 5 results in a TypeError.

Similarly, "Hello" < True results in a TypeError.

On the other hand, integers and floating point numbers can be mixed freely. When this 
happens, the result is usually a floating point number.

For example, 8 * 2.0 results in 16.0
15



Data Type Names

When reading error messages, note that Python uses shortened names 
for the four types we've covered.

Integers are called int

Floating point numbers are called float

Strings are called str

Booleans are called bool

16



Activity: Predict the Type

Let's do a Kahoot to see if you can identify data types correctly!

Join by going to kahoot.it, then enter the game's pin.

17

https://kahoot.it/


Writing Code in Files

18



Writing Longer Programs: Use the Editor

What if we want to run more than one line of code at a time? We'll need to 
use the editor.

Write lines of code in the editor, save the file, then click Run current script.

Thonny will interpret the entire text file into Python code the computer will 
understand. It will then run line-by-line through the entire program 
sequentially, where each line is ended by the enter key.

This is different from the interpreter, which ran each line individually (though 
with the context of the previous lines).

19

Note: before you can run code, you 
must save it in a file on the system



Print Displays Data

Code run from a file doesn't show the evaluated result of every line (unlike 
code run from the interpreter). If we want to display a result, we need to use 
the command print.

print takes an input expression between parentheses, evaluates the 
expression, and displays the evaluated result in the interpreter.

For example: 
print(4 - 2) displays 2 in the interpreter. 
print("15-110") displays 15-110; note that the quotes aren't included.
5 > 3 does not display True when run from the editor; it displays nothing, 
and the result is thrown away.

20



Printing Multiple Values

If you want to display multiple values in the interpreter on the same line, you have 
two choices.

First, if you're printing strings, you can concatenate them together.

print("Result: " + "2")

Alternatively, you can use commas to separate the values. print will then separate 
the printed values with spaces automatically. This is helpful for printing mixed types.

print("Result:", 2)

21



Comments are Ignored by the Computer

When writing a program with multiple lines, you might want to leave notes to yourself outside of 
the program commands. Use comments to do this.

Any text that follows a # on a line will be ignored by the computer:

print("Hello World") # a greeting

To comment out a block of code, put """ or ''' at the beginning and end:

"""

print("ignore")

print("this")

"""

You can also select a block of code and click 'Toggle Comment' in Thonny to 
comment/uncomment a block of code.

22



Error Messages

23



Syntax Needs to be Exact

Computers aren't very clever. If you change the syntax of code even a 
little bit, the computer might not understand what you mean and will 
raise an error.

Print("Hello World") # NameError

print "Hello World" # SyntaxError

When you get an error message, read it carefully. Error messages 
contain useful information that will help you fix your code.

24



Debug Errors By Reading the Message

1. Look for the line number. This line tells you 
approximately where the error occurred.

2. Look at the error type.

3. If it says SyntaxError, look for the inline 
arrow. The position gives you more 
information about the location of the 
problem (though it isn't always right).

4. If it says something else, read the error 
message. The error type and its message 
give you information about what went 
wrong.

We'll talk more about the debugging process 
in future lectures.

25

line number

inline arrow

error type



Whitespace is Syntax, Sometimes

Be careful when using whitespace (spaces, tabs, and the return key) – it can 
sometimes count as syntax too!

In general, whitespace at the beginning of a line has meaning; we'll discuss what it 
means more in a few weeks. Whitespace in the middle of tokens causes errors. 
Whitespace between tokens is okay.

print("Hello World") # IndentationError

p r i n t ( "Hello World" ) # SyntaxError

print ( "Hello World" ) # this is okay!

26



You Do: Debug the Code

You do: Given the following code and error message, determine A) 
what the problem is, and B) how to fix it.

27



Variables

28



Variables Let Us Store Data

Our last core building block is the variable. Variables let us save data so we can reuse it in 
future computations.

A variable is a name that we define in the program (without quotes), like x or result. We 
define a variable with an equal sign:

variable = expression

Note that the variable can only go on the left side of this code, and its value (or an 
expression that evaluates to a value) goes on the right. For example:

myPet = "Stella"

result = 5 + 2

42 = foo # SyntaxError
29



Variables are like Sticky Notes

You can think of a variable as a sticky note that is applied 
to a data value.

When you want to use the data value, you can use it 
directly or refer to the name on the note.

You assign a variable to a value by writing the name on the 
note and putting the note on the value.

30



Expressions vs. Statements

Python needs to keep track of certain pieces of data that change over time as 
a program runs (like which variables exist and what their values are, what 
has been printed to the screen, etc). We call this information the program
state.

When you set a variable to a new value, you change the program's state. 
That makes variable assignment too complex to be represented as 
expressions (which are more like data values).

A statement is an action taken by the program that may change the program 
state. It does not evaluate to a value; instead, it executes a change, then 
moves on to the next line. Variable assignments are statements.

31



Using and Updating Variables

Once we've defined a variable, we can use it in later expressions.

x = 5

y = x - 2 # x evaluates to 5

Unlike in math, we can also change the variable to hold a new value, if needed.

x = 5

x = x - 1 # x evaluates to 5 on the right

# then changes to 4

print("x:", x) # x: 4

32

This is like moving 
the sticky note to 

a new value



Python is Sequential

Note that Python runs every line in order and doesn't peek ahead. If 
you want to use a variable, you must define it before it is used.

print(foo) # this causes an error!

foo = 42

foo = 42

print(foo) # this is fine!

33



Activity: Trace the Variable Values

You do: Trace through the following lines of code. What values do a
and b hold at the end?

a = 4

b = a - 2

a = a + 1

b = 7

34



Sidebar: Rules for Variable Names

Variable names can use any combination of uppercase letters, 
lowercase letters, digits, and underscores. They must start with a letter 
or _. Starting with a lowercase letter is recommended. 

Variable names are case sensitive. For example, Banana is not the 
same as banana. Make sure to type your variables correctly, or you'll 
get a NameError!

35



Learning Objectives

• Recognize and use the basic data types in programs

• Interpret and react to basic error messages caused by programs

• Use variables in code and trace the different values they hold

36


