15-110 Exam1 Notes Sheet

Algorithms & Abstraction

Algorithms: procedures that specify how to do a task or solve a problem
Abstraction: changing the level of detail used to represent/interact with a system

Designing algorithms:
Little abstraction: assume no prior knowledge, need to define everything
Moderate abstraction: assume user has some basic knowledge already
Heavy abstraction: can make a lot more assumptions about incoming knowledge

Programming Basics

Integer (int): whole numbers (14)
Floating point number (float): numbers with a fractional part (5.735)
String (str): text in quotes ("Sup all")
Boolean (bool): truth value (True)

Number operations: +, -, *, /, **, %, //
Text operations: +, *, in
Comparison ops: <, >, <=, >=, ==, !=

Expression: code that evaluates to a data value
Statement: code that can change the state of the program
Variable assignment: x = expr stores the value of expr in the variable x
Variables: x evaluates to the value stored in the variable x

When dealing with an error:
1. Look for the line number
2. Look at the error type
3. For SyntaxErrors, look for the inline arrow
4. For other errors, read the error message

Data Representation

Number system: a way of representing a number using symbols. Currency, decimal, etc

Binary numbers: numbers in the base 2 system, composed of 0s and 1s.
Bit: a single digit in binary
Byte: eight bits interpreted together

Translate binary to decimal: add together the powers of 2 represented by the 1s. The first eight powers of 2 are 1, 2, 4, 8, 16, 32, 64, and 128.

Translate decimal to binary: repeatedly look for the largest power of 2 that fits in the decimal and remove it

Interpret binary as color: represent a single color with RGB (Red-Green-Blue). Each color component is represented by three bytes- intensity of red, then green, then blue.

Interpret binary as text: make a lookup table (like ASCII) that maps characters to numbers. Convert each byte to a number and look it up in the table.

Function Calls

Function: an algorithm implemented abstractly in Python that can be called on specific inputs

Arguments: input values to function call
Returned value: evaluated result, the output. If no output, defaults to None
Side effect: visible things that happen as the function runs (printing, graphics, etc)

print(expr) - show expr in interpreter
abs(num) - absolute value of num
pow(x, y) - raises x to power of y
round(x, y) - round x to y sig. digits
type(expr) - type of evaluated expr
input(msg) - accepts user input

Library: a collection of functions that need to be imported to be used

import libraryName

math.ceil(x) - ceiling of x
math.log(x, y) - log of x with base y
math.radians(x) - degrees to radians
math.pi - pi (to some number of digits)

random.randint(x, y) - random int in range [x, y]
random.random() - random float in range [0, 1)

canvas.create_rectangle(a,b,c,d) - draw a rectangle from point (a, b) to point (c, d)
canvas.create_rectangle(a,b,c,d,
 fill="blue")
- fill in the rectangle with the color blue

Function Definitions

Function definition: abstract implementation of an algorithm. Provides input with parameters (abstract variables), produces a result with a return statement.

def funName(args):
 # body
 return result

Local scope: variables in function definitions (including parameters) are only accessible within that function.

Global scope: variables at the global (top) level are accessible at the top-level, and by any function.

Function Call Tracing: Python keeps track of the functions it is currently calling in nested function calls. When Python reaches a return statement, it returns the value to the most recent function that called the current function.

Booleans, Conditionals, & Errors

Logical operators: and, or, not

Short circuit evaluation: Python only evaluates the second half of a logical operation if it needs to

Conditional statement: control structure that allows you to make choices in a program.

if booleanExpr:
 ifBody
elif booleanExpr:
 elifBody
else:
 elseBody

Syntax Error: an error that occurs when Python cannot tokenize or structure code. Examples: SyntaxError, IndentationError, Incomplete Error

Runtime Error: an error that occurs when Python encounters a problem while running code. Examples: NameError, TypeError, ZeroDivisionError

Logical Error: an error that occurs when code runs properly but does not produce the intended result. Often (but not always) caused by a failed test case with AssertionError

assert(funName(input) == output)

Circuits and Gates

Circuit: a hardware component that manipulates bits to compute an algorithmic result. Can also be simulated with an abstract version.

Gate: an abstract component of a circuit. Takes some number of bits as input and outputs a bit.

Gates: ∧ (and), ∨ (or), ¬ (not), ⊕ (xor); also nand and nor (no special symbols)

Gates (in circuits):
and: [image:]or: [image:]
not: [image:]xor:[image:]
nand: [image:]nor: [image:]

Truth table: a table that lists all possible input bit combinations and the resulting output for a particular gate or circuit

Half-adder: a circuit that takes two one-digit binary numbers, adds them, and outputs two digits as the result

Full adder: a circuit that takes two one-digit binary numbers and a carried-in digit, adds all three, and outputs two digits as the result

N-bit adder: a circuit that takes two n-bit numbers, adds them together by chaining together n full adders, and outputs a n+1-digit result
While Loops

While loop: a control structure that lets you repeat actions while a given Boolean expression is True

while booleanExpr:
 whileBody

Infinite loop: a while loop that never exits due to the state of the program

Loop control variable: a variable used to manipulate the number of times a loop iterates. Requires a start value, update action, and continuing condition.

For Loops

For loop: a control structure that lets you repeat actions a specific number of times

for var in range(rangeArgs):
 forBody

Range: a function that generates values for the loop control variable in a for loop. Can take 1-3 inputs.

range(end) # [0, end)
range(start, end) # [start, end)
range(start, end, step)
step provides the increment

Strings

Index: access a specific value in a sequence based on its position. Positions start at 0 and end at len(seq)-1. Non-existent indexes result in IndexError.

strExpr[index]

Slice: access a subsequence of a larger sequence based on a given start, end (not inclusive), and step

strExpr[start:end:step] # slice
strExpr[start:end] # also slice
default to 0:len(strExpr):1

Looping over strings: use range and indexing to access one character at a time.

for i in range(len(strExpr)):
 something with strExpr[i]

General Control Structures

Control flow chart: chart that designates how a program steps through commands. Uses branches for conditional checks and arrows leading back to previous commands for loops.

Nesting: a control structure can be included in the body of another control structure through use of indentation.

Nested loop: a loop with another loop in its body. The inner loop is fully executed for each iteration of the outer loop.
image3.png

image4.png

image1.png

image5.png

image2.png

image6.png

