
15-110 Check3 - Written Portion

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results.

When you are finished, upload your check3.pdf to Check3 - Written on Gradescope,
and upload your check3.py file to Check3 - Programming on Gradescope. Make sure
to check the autograder feedback after you submit!

Written Problems
#1 - Tracing Lists - 5pts
#2 - Aliasing and Mutability - 20pts
#3 - Base Cases and Recursive Cases - 16pts
#4 - Binary Search - 14pts

Programming Problems
#1 - Hw2 Code Review - 5pts
#2 - sumAnglesAsDegrees(angles) - 10pts
#3 - onlyOdds(lst) - 10pts
#4 - removeEvens(lst) - 10pts
#5 - recursiveReverse(lst) - 10pts



Written Problems

#1 - Tracing Lists - 5pts
Can attempt after Lists and Methods lecture

Trace the code below, then fill in the table with what it prints (one row per line).
You might not need to use all of the rows.



#2 - Aliasing and Mutability - 20pts
Can attempt after References and Memory lecture

The following code creates and modifies lists. Determine each list’s values after the
code has run.

Variable List Values

a

b

c

d

Select all of the pairs of lists that are aliased at the end of the code.

☐ a and b

☐ a and c

☐ a and d

☐ b and c

☐ b and d

☐ c and d

☐ None of the lists are aliased



#3 - Base Cases and Recursive Cases - 16pts
Can attempt after Recursion lecture

Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

How do you use the recursive call's result to solve the whole problem for n in the
recursive case?



#4 - Binary Search - 14pts
Can attempt after Recursion II & Search Algorithms lecture

In the following table, write out the recursive calls that our implementation of
binarySearch from lecture would make while searching the given list for the given
item. Make sure to write out the function call, not the result. You might not need to use
all the rows.

For example, if you were to trace binarySearch([1, 2, 3, 4, 5], 1), you'd get:
Recursive Call 1: binarySearch([1, 2], 1)
Recursive Call 2: binarySearch([1], 1)

Q1: Search for 5

Original Call binarySearch([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 5)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5

Q2: Search for 14

Original Call binarySearch([3, 5, 6, 7, 9, 11, 11, 15, 15, 19], 14)

Recursive Call 1

Recursive Call 2

Recursive Call 3

Recursive Call 4

Recursive Call 5



Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run File As Script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - Hw2 Code Review - 5pts
It isn't always good enough just to write code that works. It's also important to write code
that is clear and robust - easy to understand and ready to handle a variety of inputs.

To help you learn how to write good code, we will have up to three code reviews this
semester, where you will meet with a course TA to go over the code you wrote for a
previous assignment. The TA will point out things you're doing well and areas where
your code can be cleaner (even if it works already!).

To receive five points for the Hw2 code review, sign up for and attend a code review
session with a TA the weekend of 10/01 - 10/03. We'll release more details about how to
sign up for and attend these sessions via Piazza.

#2 - sumAnglesAsDegrees(angles) - 10pts
Can attempt after Lists and Methods lecture

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to change each angle from radians to degrees before adding it to the sum.
You can do this with the library function math.degrees(). Make sure to round the final
result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.



#3 - onlyOdds(lst) - 10pts
Can attempt after References and Memory lecture

Write a non-destructive function onlyOdds(lst) that takes a list of integers and
returns a new list containing only the odd elements of lst. Note that this should not
return the odd indexes- it should return the odd elements!

For example, onlyOdds([1, 2, 3, 4, 5, 6]) returns [1, 3, 5], and
onlyOdds([4, 1, 70, 35, -9]) returns [1, 35, -9]

#4 - removeEvens(lst) - 10pts
Can attempt after References and Memory lecture

Write a destructive function removeEvens(lst) that takes a list of integers and
destructively removes the even elements of the provided list so that it contains only the
original odd elements at the end of the function. This function should return None

instead of the list; we'll test it by checking whether the input list was modified properly.

For example, removeEvens([1, 2, 3, 4, 5, 6]) modifies the list to be [1, 3, 5],
while removeEvens([4, 1, 70, 35, -9]) modifies the list to be [1, 35, -9].

Hint: this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the course slides! Also, make sure to check for
aliasing issues.

#5 - recursiveReverse(lst) - 10pts
Can attempt after Recursion lecture

Write a function recursiveReverse(lst) that takes a list as input and returns a new
list which has the same elements, but in reverse order. This function must use
recursion in a meaningful way; a solution that uses a loop, built-in reverse functions, or
a slice with a negative step will receive no points.

For example, recursiveReverse([1, 2, 3]) should return [3, 2, 1].


	List Valuesa: 
	List Valuesb: 
	List Valuesc: 
	List Valuesd: 
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case: 
	What do you return in the base case: 
	What is the recursive call on a smaller problem in the recursive case: 
	recursive case: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 5Recursive Call 5: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 1: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 2: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 3: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 4: 
	binarySearch3 5 6 7 9 11 11 15 15 19 14Recursive Call 5: 
	Text1: 
	Text2: 
	Text3: 
	Text4: 
	Text5: 
	Text6: 
	Text7: 
	Text8: 
	Text9: 
	Text10: 
	Text11: 
	Text12: 
	Text13: 
	Text14: 


