These problems were generated by TAs and instructors in previous semesters. They may or may not match the actual difficulty of problems on Test4.

Dictionaries

1. The fruits in a bag of groceries are provided as a list (eg. ["apple", "oranges", "banana", "kiwis"]). For any elements in the list that are plural, like "kiwis", we say there are 3 of that fruit in the bag. (There are no fruits in the bag where the singular form of the word ends in an "s".) Write a function groceryCount that outputs a dictionary with each fruit name and its frequency as a key-value pair.

For example:
groceryCount(["apple", "oranges", "banana", "kiwis", "kiwi"]) == \{ "apple" : 1, "orange" : 3, "banana" : 1, "kiwi" : 4 \}
2. What does the following code print?

```
def chainedKeys(dict, startkey):
    key = startkey
    while key in dict.keys():
        key = dict[key]
        print(key)
    return key
result = chainedKeys({3:6, 4:9, 5:7, 6:5, 7:4, 8:9, 9:2}, 3)
print(str(result) + " is missing")
```

What is one key whose value could be changed to make the function loop infinitely? What should the value be changed to?

Trees

1. Write a function that calculates the height of a (possibly unbalanced) binary tree. For example, the tree below would have a height of 3 .

2. Add a node and edge to transform this tree from a binary tree to a general tree (i.e., it should no longer be binary).

3. Label the following trees with either tree, binary tree, or binary search tree, giving the most specific term if multiple terms apply.

Graphs

1. How are graphs and trees similar? How are they different?
2. Write the dictionary that would represent the following graph.

3. Draw a directed graph with weights based on the given dictionary:

$$
\begin{gathered}
\text { graph }=\{\text { "a" : [["b", 1], ["c", 5]], } \\
\text { "b" }:[\text { ["c", 2]], } \\
\text { "c" }: \text { [["a", 6], ["c", 3]], } \\
\text { "d" }:[\text { ["a", 4]] \} }
\end{gathered}
$$

Search Algorithms II

1. What properties does a hash function need to achieve $O(1)$ lookup in a hashtable?
2. What are some data structures that you can apply hash functions to? And what are the ones you cannot?
3. What would happen if two objects happen to have the same hash values? Is it allowed?
4. Each student in $15-110$ is asked to create a list of their favorite ice cream flavors, which they can update as their tastes change.

Students A and B say ["chocolate", "vanilla", "strawberry"],
Student C says ["mint chocolate chip", "chocolate", "strawberry"], and
Student D says ["vanilla", "mint chocolate chip", "chocolate"].
Later, Student C finds the best strawberry ice cream ever and destructively shuffles their favorite list.

Your professors want to maintain a dictionary of ice cream preferences (keys) to student counts (values) in order to keep track of which combination is the favorite at the time the preferences were first collected. How should they store the keys?

Keys are the lists that the students submit.
Keys are lists converted into strings using $\operatorname{str}()$.

Why that approach?

The professors also try to store each of the flavors in a hash table by the index of the first letter in the alphabet (i.e., almond ice cream would be index 0 , birthday cake would be 1). Insert chocolate, jalapeno, mint, and greentea into the following hash table, using the algorithm discussed in class and practiced on your homework.

5. Consider the binary search tree below. What nodes would you visit while searching the tree for the value 33 ?

6. Given a description of a search algorithm, identify A) what kind of data structure is being searched, and B) what the name of that search algorithm is. Each algorithm is searching a data structure for the value item.

A: If the node's value equals item, return True. If item is less than the node's value, recurse on the left child and return the result; otherwise, recurse on the right child and return the result.

B: Go through each value sequentially, starting from the beginning. If you reach a value that equals item, return True. If you run out of values to search, return False.

C: Begin with the start node in the to-visit list. While there are still nodes left to visit, check if the next node on the to-visit list equals item, and return True if it does. Then check if it has been visited before. If it has not, add all of the nodes connected to that node to the end of the to-visit list. If the to-visit list becomes empty, return False.
7. Add a node with value 7 to the tree so that it remains a binary search tree.

8. Draw an X over each edge that must be removed and draw a dotted line for any edges that must be added to make this graph a binary search tree.

Tractability

1. State True/False for the following questions and explain the answer.
a. If we have an algorithm to solve a problem then we have a tractable solution.
b. Any problem that runs in $\mathrm{O}\left(n^{\wedge} k\right)$ is intractable.
c. If any problem that can be solved in polynomial time can be verified in polynomial time, then we have proved $\mathrm{P}=\mathrm{NP}$.
2. Is exam scheduling a tractable problem? If yes, explain why / how you know. If not, explain how we still get all of our exams scheduled.
3. For each question, check the box next to the correct answer.

True orFalse

True or
False

True or \square
False

True or False

If every problem in NP can be solved in polynomial time, then $\mathrm{P}=\mathrm{NP}$

A problem is intractable if it can be solved but it may take too long to practically get that answer.

All problems in NP are intractable to verify.

