

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 1
● Understand the expectations, resources, and policies associated with 15-110
● Define the essential components of computer science, algorithms and abstraction
● Follow steps provided by an algorithm to perform specific tasks

● Recognize and use the basic data types in programs
● Interpret and react to basic error messages caused by programs
● Use variables in code and trace the different values they hold

● Understand how different number systems can represent the same information
● Translate binary numbers to decimal, and vice versa
● Interpret binary numbers as abstracted types, including colors and text

● Identify the inputs, returned value, and side effects of a function call
● Write new functions by identifying an algorithm's steps, input, output, and side effects
● Recognize the difference between local and global scope

● Recognize that the process of tokenizing, parsing, and translating converts Python

code into instructions a computer can execute
● Interpret and trace basic bytecode instructions
● Recognize how the different types of errors are raised at different points in the Python

translation process

● Use logical operators on Booleans to compute whether an expression is True or False
● Use conditionals when reading and writing algorithms that make choices based on data
● Debug logical errors by using the scientific method

● Translate Boolean expressions to truth tables and circuits
● Translate circuits to truth tables and Boolean expressions
● Recognize how addition is done at the circuit level using algorithms and abstraction

● Use while loops when reading and writing algorithms to repeat actions while a certain

condition is met

● Identify start values, continuing conditions, and update actions for loop control
variables

● Use for loops over a range when reading and writing algorithms to repeat actions a

specified number of times
● Recognize which numbers will be produced by a range expression

● Translate algorithms from control flow charts to Python code
● Use nesting of statements to create complex control flow

● Index and slice into strings to break them up into parts
● Use for loops over a range to loop over strings by index
● Use built-in string operations and methods to solve problems

Unit 2
● Read and write code using 1D and 2D lists
● Use list methods to change lists without variable assignment

● Recognize whether two values have the same reference in memory
● Recognize the difference between mutable vs. immutable data types
● Recognize the difference between destructive vs. non-destructive functions/operations
● Use aliasing to write functions that destructively change lists

● Define and recognize base cases and recursive cases in recursive code
● Read and write basic recursive code

● Trace over recursive functions that use multiple recursive calls with Towers of Hanoi
● Recognize linear search on lists and in recursive contexts
● Use binary search when reading and writing code to search for items in sorted lists

● Compare the function families that characterize different functions
● Identify the worst case and best case inputs of functions
● Calculate a specific function's efficiency using Big-O notation

● Recognize the general algorithm and trace code for three algorithms: selection sort,

insertion sort, and merge sort
● Compute the Big-O runtimes of selection sort, insertion sort, and merge sort

● Identify the keys and values in a dictionary
● Use dictionaries when writing and reading code

● Identify core parts of trees, including nodes, children, the root, and leaves
● Use binary trees implemented with dictionaries when reading and writing code

● Identify core parts of graphs, including nodes, edges, neighbors, weights, and

directions.
● Use graphs implemented as dictionaries when reading and writing simple algorithms in

code

● Understand how and why hashing makes it possible to search for values in O(1) time
● Search for values in a hashtable using a specific hash function
● Identify whether or not a tree is a binary search tree
● Search for values in binary search trees using binary search
● Search for values in graphs using breadth-first search and depth-first search

● Identify brute force approaches to common problems that run in O(n!), including

solutions to Travelling Salesperson and puzzle-solving
● Identify brute force approaches to common problems that run in O(2^n), including

solutions to subset sum and exam scheduling
● Define whether a function family is tractable or intractable
● Define the complexity classes P and NP, and explain why they are important

Unit 3
● Define and understand the differences between the following types of concurrency:

circuit-level concurrency, multitasking, multiprocessing, and distributed
computing

● Create concurrency trees to increase the efficiency of complex operations by executing
sub-operations at the same time

● Recognize certain problems that arise while multiprocessing, such as difficulty of

design and deadlock
● Create pipelines to increase the efficiency of repeated operations by executing

sub-steps at the same time
● Use the MapReduce pattern to design and code parallelized algorithms for distributed

computing

● Recognize core terms related to the internet, including: browsers, routers, ISPs, IP
addresses, DNS servers, protocols, packets, and cloud

● Understand at a high level the internet communication process that happens when
you click on a link to a website in your browser.

● Understand at a high level that the internet is fault tolerant due to being distributed

● Define the following terms: data privacy, data security, authentication, and
encryption

● Recognize the traits of the internet that make it more prone to security attacks and
recognize common security attacks (DDOS and man-in-the-middle).

● Trace common encryption algorithms, such as the Caesar Cipher and RSA, and
recognize whether they are symmetric or asymmetric

● Evaluate the efficiency of performing encryption algorithms and breaking encryption
algorithms.

Unit 4
● Implement helper functions in code to break up large problems into solvable subtasks
● Recognize the four core rules of code maintenance
● Use the input command and try/except structures to handle direct user input in code
● Learn how to install and use external modules

● Read and write data from files
● Interpret data according to different protocols: plaintext, CSV, and JSON
● Reformat data to find, add, remove, or reinterpret pre-existing data

● Represent the state of a system in a model by identifying components and rules
● Visualize a model using graphics
● Update a model over time based on rules
● Update a model based on events (mouse-based and keyboard-based)

● Given a dataset, identify categorical, ordinal, and numerical features which may help

predict information about the data during training
● Identify how training data, validation data, and testing data is used in machine

learning to support testing
● Identify the three main categories of machine learning – classification, regression, and

clustering – and decide which is the best fit for a problem

● Perform basic analyses on data to answer simple questions
● Adapt matplotlib example code to create visualizations that show the state of a dataset

● Recognize and use methods from the random library to implement randomness
● Use Monte Carlo methods to estimate the answer to a question
● Organize animated simulations to observe how systems evolve over time

● Recognize how AIs attempt to achieve goals by using a perception, reason, and

action cycle
● Build game decision trees to represent the possible moves of a game
● Use the minimax algorithm to determine an AI's best next move in a game
● Design potential heuristics that can support 'good-enough' search for an AI

Unit 5
● Big Ideas of: Introduction of the theoretical concept of a computer
● Big Ideas of: Construction of the first computer hardware and software
● Big Ideas of: Transition of computers from government/corporate to personal
● Big Ideas of: Connection of computers via the internet

● Understand the current extent of data collection on the internet and how data is used
● Recognize the uses and drawbacks of facial recognition algorithms in different contexts
● Identify the societal impact when AI decision making replaces human decision making

due to the explainability problem

● Define key future computing buzzwords, including: cryptocurrency, deepfake, 5G, VR,
and quantum computing.

● Identify occupations that may be at risk due to automation
● Describe how the Turing test works, and what its purpose is

